Asymptotic similarity preserving additive maps on B(X)

被引:3
|
作者
Du, SP
Hou, JC [1 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030000, Peoples R China
[2] Shanxi Teachers Univ, Dept Math, Linfen 041004, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
similarity; asymptotic similarity; asymptotic similarity-preserving additive maps;
D O I
10.1016/j.jmaa.2003.10.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be an infinite dimensional complex Banach space and denote B(X) the algebra of all bounded linear operators acting on X. We show that an additive surjective map on B(X) preserves asymptotic similarity in both directions if and only if there exist a nonzero scalar c, an invertible bounded linear or conjugate linear operator A and an asymptotic similarity invariant additive functional phi on B(X) such that either phi(T) = cATA(-1) + phi(T)I for all T or phi(T) = cAT*A(-1) phi(T)I for all T. In the case that X has infinite multiplicity, especially if X is an infinite dimensional Hilbert space, above asymptotic similarity invariant additive functional phi is always zero. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 30
页数:11
相关论文
共 50 条