Shock Reflection Problems and Gas Dynamics Equations

被引:0
|
作者
Jegdic, Katarina [1 ]
机构
[1] Univ Houston, Comp & Math Sci Dept, Downtown Houston, TX 77002 USA
关键词
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present mathematical analysis of shock reflection phenomenon using two-dimensional systems of conservation laws. Depending on the initial data, various types of shock reflection are possible, such as regular reflection (either supersonic or transonic) or Mach. We present proof of existence of regular reflection for the system of isentropic gas dynamics equations. The main idea in our approach is to rewrite the system using the self-similar coordinates. This leads to a free boundary problem for the subsonic state and the reflected shock. Existence of a solution is proved using the Holder estimates for the second order elliptic equations and various fixed point arguments. This work is joint with Barbara Lee Keyfitz (Ohio State University) and Suncica Canic (University of Houston).
引用
收藏
页码:16 / 16
页数:1
相关论文
共 50 条
  • [41] Invariant solution of gas dynamics equations
    Golovin, S.V.
    Journal of applied mechanics and technical physics, 1997, 38 (01): : 1 - 7
  • [42] THE INTERFACE COUPLING OF THE GAS DYNAMICS EQUATIONS
    Chalons, Christophe
    Raviart, Pierre-Arnaud
    Seguin, Nicolas
    QUARTERLY OF APPLIED MATHEMATICS, 2008, 66 (04) : 659 - 705
  • [43] Invariant solution of gas dynamics equations
    Golovin S.V.
    Journal of Applied Mechanics and Technical Physics, 1997, 38 (1) : 1 - 7
  • [44] Vanishing pressure in gas dynamics equations
    Goudon, T
    Junca, S
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (01): : 143 - 148
  • [45] Vanishing pressure in gas dynamics equations
    T. Goudon
    S. Junca
    Zeitschrift für angewandte Mathematik und Physik, 2000, 51 : 143 - 148
  • [46] EXACT EXPRESSIONS FOR SHOCK REFLECTION TRANSITION CRITERIA IN A PERFECT GAS
    HENDERSON, LF
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (06): : 258 - 261
  • [47] On Shock Reflection-Diffraction in a van der Waals Gas
    Gupta, Neelam
    Sharma, V. D.
    STUDIES IN APPLIED MATHEMATICS, 2015, 135 (02) : 171 - 195
  • [48] Oblique shock reflection from an axis of symmetry: shock dynamics and relation to the Guderley singularity
    Hornung, HG
    Schwendeman, DW
    JOURNAL OF FLUID MECHANICS, 2001, 438 : 231 - 245
  • [49] Effects of Different Equations of State on the Oblique Shock Wave Reflection in Solids
    Yu, Xin
    Huang, Xiao
    Zheng, Miao
    ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 : 1037 - 1042
  • [50] REFLECTION COEFFICIENT PROBLEMS FOR WEAKLY NONLINEAR-WAVE EQUATIONS
    HU, JS
    KRUSKAL, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (06) : 1584 - 1596