Temperature dependence of protocrystalline silicon/microcrystalline silicon double-junction solar cells

被引:14
|
作者
Sriprapha, Kobsak
Myong, Seung Yeop
Yamada, Akira [1 ,2 ]
Konagai, Makoto
机构
[1] Tokyo Inst Technol, Dept Phys Elect, Meguro Ku, Tokyo 1528552, Japan
[2] Tokyo Inst Technol, Quantum Nanoelect Res Ctr, Meguro Ku, Tokyo 1528552, Japan
关键词
temperature dependence; amorphous silicon; protocrystalline silicon; microcrystalline silicon; double-junction solar cells; crystalline volume fraction;
D O I
10.1143/JJAP.47.1496
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have investigated the temperature dependence of hydrogenated protocrystalline silicon (pc-Si: H) /hydrogenated microcrystalline silicon (gc-Si:H) double-junction solar cells. A boron-doped zinc oxide (ZnO:B) film is employed as an intermediate layer between the pc-Si:H top cell and the gc-Si:H bottom cell. The fabricated solar cells exhibit good stability against light soaking. Photocurrent density-voltage (photo J-V) characteristics are measured under AM 1.5 illumination at ambient temperatures in the range of 25-75 degrees C. The double-junction solar cells show a temperature coefficient (TC) for conversion efficiency (eta) of around -0.30 to -0.45%/degrees C, which between the TC for eta of the pc-Si:H top and gc-Si:H bottom cells. It is found that the values of TC for eta are inversely proportional to the initial open-circuit voltage (V-oc). In contrast, these values become higher with the increase in the crystalline volume fraction (X-c) of the i-mu c-Si:H in the bottom cells. Since the pc-Si:H/mu c-SiM double-junction solar cells exhibit high eta, low light-induced degradation, and low temperature dependence, they are good candidates for solar cells that operate in high-temperature or tropical regions.
引用
收藏
页码:1496 / 1500
页数:5
相关论文
共 50 条
  • [21] Preparation of microcrystalline silicon solar cells on microcrystalline silicon carbide window layers grown with HWCVD at low temperature
    Huang, Y.
    Chen, T.
    Gordijn, A.
    Dasgupta, A.
    Finger, F.
    Carius, R.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (19-25) : 2430 - 2434
  • [22] Flexible protocrystalline silicon solar cells with amorphous buffer layer
    Ishikawa, Yasuaki
    Schubert, Markus B.
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006, 45 (9 A): : 6812 - 6822
  • [23] ADVANCES IN DOUBLE-JUNCTION AMORPHOUS-SILICON PHOTOVOLTAIC MODULES
    ICHIKAWA, Y
    SAKAI, H
    SOLAR CELLS, 1991, 30 (1-4): : 285 - 291
  • [24] Hydrogenated microcrystalline silicon for solar cells
    Sharafutdinov, R. G.
    Shchukin, V. G.
    Semenova, O. I.
    INORGANIC MATERIALS, 2012, 48 (05) : 445 - 450
  • [25] Hydrogenated microcrystalline silicon for solar cells
    R. G. Sharafutdinov
    V. G. Shchukin
    O. I. Semenova
    Inorganic Materials, 2012, 48 : 445 - 450
  • [26] Intrinsic microcrystalline silicon for solar cells
    Vetterl, O
    Hapke, P
    Kluth, O
    Lambertz, A
    Wieder, S
    Rech, B
    Finger, F
    Wagner, H
    SOLID STATE PHENOMENA, 1999, 67-8 : 101 - 106
  • [27] Amorphous and microcrystalline silicon solar cells
    Wagner, S
    Carlson, DE
    Branz, HM
    PHOTOVOLTAICS FOR THE 21ST CENTURY, 1999, 99 (11): : 219 - 231
  • [28] Intrinsic microcrystalline silicon for solar cells
    Inst. fur Schicht-und Lonentechnik, Forschungszentrum Jülich, DE-52425 Jülien, Germany
    Solid State Phenomena, 1999, 67 : 101 - 106
  • [29] Porous microcrystalline silicon solar cells
    Duttagupta, SP
    Kurinec, SK
    Fauchet, PM
    ADVANCES IN MICROCRYSTALLINE AND NANOCRYSTALLINE SEMICONDUCTORS - 1996, 1997, 452 : 625 - 630
  • [30] Development of thin film a-SiO:H/a-Si:H double-junction solar cells and their temperature dependence
    Sriprapha, Kobsak
    Hongsingthong, Aswin
    Krajangsang, Taweewat
    Inthisang, Sorapong
    Jaroensathainchok, Suttinan
    Limmanee, Amornrat
    Titiroongruang, Wisut
    Sritharathikhun, Jaran
    THIN SOLID FILMS, 2013, 546 : 398 - 403