Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth

被引:22
|
作者
Wei, Juncheng [1 ]
Yan, Shusen [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2007年 / 88卷 / 04期
基金
澳大利亚研究理事会;
关键词
critical exponent; boundary peaks; singularly perturbed Neumann problem; gradient flows;
D O I
10.1016/j.matpur.2007.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following problem, -Delta u + mu u = u(2*-1), u > 0 in Omega, partial derivative u/partial derivative n = 0 on partial derivative Omega, where mu > 0 is a large parameter, Omega is a bounded domain in R-N, N >= 3 and 2* = 2N/(N - 2). Let H(P) be the mean curvature function of the boundary. Assuming that H(P) has a local minimum point with positive minimum, then for any integer k, the above problem has a k-boundary peaks solution. As a consequence, we show that if Omega is strictly convex, then the above problem has arbitrarily many solutions, provided that mu is large. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:350 / 378
页数:29
相关论文
共 50 条