Evolving kernel principal component analysis for fault diagnosis

被引:43
|
作者
Sun, Ruixiang
Tsung, Fugee
Qu, Liangsheng
机构
[1] Hong Kong Univ Sci & Technol, Dept Ind Engn & Logist Management, Kowloon, Peoples R China
[2] Xian Jiaotong Univ, Dept Diagnost & Cybernet, Xian 710049, Peoples R China
关键词
kernel principal component analysis; genetic algorithms; fault diagnosis;
D O I
10.1016/j.cie.2007.06.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Feature extraction is the core of a fault diagnosis system. This paper presents a novel approach, called evolving kernel principal component analysis (EKPCA), to transform the original features to a more effective nonlinear combination in fault classification. EKPCA is based on the integration of kernel principal component analysis (KPCA) and an improved evolutionary optimization algorithm. As a coordinate transformation technique, KPCA is a superset of principal component analysis (PCA), which is utilized to project the original data space to a nonlinear feature space via the appropriate kernel function, and then PCA is performed in the projected feature space. Compared with PCA, KPCA is more flexible in extracting a group of new nonlinear features. However, the efficiency of KPCA in real-world applications depends mainly on the kernel function chosen a priori. It remains an issue of how to select the kernel function from the viewpoint of optimization. This paper addresses this issue using the techniques from evolutionary computation (EC). An improved evolutionary algorithm incorporated with a Gaussian mutation operator that is inspired from evolutionary strategies (ES) and evolutionary programming (EP) can enhance both the global and the local search performances without substantially increasing the computational effort. The application in fault diagnosis to a large-scale rotating machine shows that EKPCA is effective and efficient in discovering the optimal nonlinear features corresponding to real-world operational data. Thus, this method can improve the recognition power of a fault diagnosis system. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 50 条
  • [21] Research on nonlinear process monitoring and fault diagnosis based on kernel principal component analysis
    He, Fei
    Li, Min
    Yang, Jianhong
    Xu, Jinwu
    DAMAGE ASSESSMENT OF STRUCTURES VIII, 2009, 413-414 : 583 - 590
  • [22] Fault Diagnosis of Power Transformer Based on Feature Evaluation and Kernel Principal Component Analysis
    Wu G.
    Yuan H.
    Gao B.
    Li S.
    Yuan, Haiman (suc_1012haiman@126.com), 2017, Science Press (43): : 2533 - 2540
  • [23] Sensor fault diagnosis of nonlinear processes based on structured kernel principal component analysis
    Fu K.
    Dai L.
    Wu T.
    Zhu M.
    Journal of Control Theory and Applications, 2009, 7 (3): : 264 - 270
  • [24] Sensor fault diagnosis of nonlinear processes based on structured kernel principal component analysis
    Kechang FU 1
    2.National Key Laboratory of Industrial Control Technology
    JournalofControlTheoryandApplications, 2009, 7 (03) : 264 - 270
  • [25] Fault Detection via Occupation Kernel Principal Component Analysis
    Morrison, Zachary
    Russo, Benjamin P.
    Lian, Yingzhao
    Kamalapurkar, Rushikesh
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2695 - 2700
  • [26] Fault diagnosis of rolling bearing based on relevance vector machine and kernel principal component analysis
    Wang, Bo
    Liu, Shulin
    Zhang, Hongli
    Jiang, Chao
    JOURNAL OF VIBROENGINEERING, 2014, 16 (01) : 57 - 69
  • [27] Fault detection and estimation using kernel principal component analysis
    Kallas, Maya
    Mourot, Gilles
    Anani, Kwami
    Ragot, Jose
    Maquin, Didier
    IFAC PAPERSONLINE, 2017, 50 (01): : 1025 - 1030
  • [28] Fault diagnosis for the landing phase of the aircraft based on an adaptive kernel principal component analysis algorithm
    Guo, Runxia
    Guo, Kai
    Dong, Jiankang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2015, 229 (10) : 917 - 926
  • [29] Improved dynamic kernel principal component analysis for fault detection
    Zhang, Qi
    Li, Peng
    Lang, Xun
    Miao, Aimin
    MEASUREMENT, 2020, 158
  • [30] The flywheel fault detection based on Kernel principal component analysis
    Li, Gan-hua
    Li, Jian-cheng
    Cao, Ya-ni
    Xu, Min-qiang
    Xia, Ke-qiang
    Wei, Jun
    Lan, Bao-jun
    Dong, Li
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 425 - 432