A new technique to study spacelike hypersurfaces of constant mean curvature in a spacetime which admits a timelike gradient conformal vector field is introduced. As an application, the leaves of the natural spacelike foliation of such spacetimes are characterized in some relevant cases. The global structure of this class of spacetimes is analyzed and the relation with its well-known subfamily of generalized Robertson-Walker spacetimes is exposed in detail. Moreover, some known uniqueness results for compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes are widely extended. Finally, and as a consequence, several Calabi-Bernstein problems are solved obtaining all the entire solutions on a compact Riemannian manifold to the constant mean curvature spacelike hypersurface equation, under natural geometric assumptions.
机构:
Departamento de Matemática, Universidade Federal do Piauí, Teresina, 64.049-550, PiauíDepartamento de Matemática, Universidade Federal do Piauí, Teresina, 64.049-550, Piauí
Aquino C.P.
de Lima H.F.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidade Federal de Campina Grande, Campina Grande, 58.429-970, ParaíbaDepartamento de Matemática, Universidade Federal do Piauí, Teresina, 64.049-550, Piauí
de Lima H.F.
dos Santos F.R.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidade Federal de Campina Grande, Campina Grande, 58.429-970, ParaíbaDepartamento de Matemática, Universidade Federal do Piauí, Teresina, 64.049-550, Piauí
dos Santos F.R.
Velásquez M.A.L.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidade Federal de Campina Grande, Campina Grande, 58.429-970, ParaíbaDepartamento de Matemática, Universidade Federal do Piauí, Teresina, 64.049-550, Piauí