CO2 Mineral Sequestration and Faujasite Zeolite Synthesis by Using Blast Furnace Slag: Process Optimization and CO2 Net-Emission Reduction Evaluation

被引:22
|
作者
Hu, Guang [1 ]
Rohani, Sohrab [2 ]
Jiang, Xiaoyong [1 ]
Li, Jiangling [1 ]
Liu, Qingcai [1 ]
Liu, Weizao [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Western Univ, Dept Chem & Biochem Engn, London, ON N6A 5B9, Canada
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Blast furnace slag; CO2; mineralization; Zeolite; Net emission; Hydrothermal reaction; CARBONATION; RECOVERY; ACID; REGENERATION; CAPTURE; TIO2;
D O I
10.1021/acssuschemeng.1c05576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 mineral sequestration is one of the most promising strategies for combating global warming. However, its industrial applications of CO2 mineral carbonation are limited due to the concerns of energy and cost consumption. Simultaneously, recovery of valuable byproducts is essential for favorable economic viability during the mineralization process. In this study, a novel process combining CO2 mineral sequestration and zeolite synthesis by using blast furnace slag was proposed. Si/Al-gel was first prepared by leaching and precipitation of the slag, followed by hydrothermal reaction to synthesize faujasite type zeolite. The process optimization and CO2 net-emission reduction evaluation of the proposed route were conducted in this study. A sole phase faujasite zeolite with high specific surface area (721 m(2)/g) was successfully synthesized under the optimal hydrothermal conditions. The Si/ Al-depleted precipitated mother liquid (rich in MgSO4) together with the CaSO4 center dot 0.5H(2)O leaching residue was used to mineral sequestrate CO2. The total amount of CO2 sequestrated by processing one ton slag was 398 kg. Preliminary evaluation of CO2 netemission reduction indicated that 52 kg of CO2 can be permanently stored for 1000 kg of slag processing after deducting the CO2 released in this process. The major component of blast furnace slag was fully utilized in this process, realizing the double benefits of CO2 emission reduction and solid waste disposal as well as exhibiting great potential for industrial application.
引用
收藏
页码:13963 / 13971
页数:9
相关论文
共 50 条
  • [41] Mineral Carbonation as a sequestration method of CO2
    Chae, Soo-Chun
    Jang, Young-Nam
    Ryu, Kyoung-Won
    JOURNAL OF THE GEOLOGICAL SOCIETY OF KOREA, 2009, 45 (05) : 527 - 555
  • [42] CO2 mineral sequestration by wollastonite carbonation
    Wenjin Ding
    Liangjie Fu
    Jing Ouyang
    Huaming Yang
    Physics and Chemistry of Minerals, 2014, 41 : 489 - 496
  • [43] Sequestration of Martian CO2 by mineral carbonation
    Tomkinson, Tim
    Lee, Martin R.
    Mark, Darren F.
    Smith, Caroline L.
    NATURE COMMUNICATIONS, 2013, 4
  • [44] CO2 mineral sequestration by wollastonite carbonation
    Ding, Wenjin
    Fu, Liangjie
    Ouyang, Jing
    Yang, Huaming
    PHYSICS AND CHEMISTRY OF MINERALS, 2014, 41 (07) : 489 - 496
  • [45] Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration
    Ko, D
    Siriwardane, R
    Biegler, LT
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (02) : 339 - 348
  • [46] Change of burden layer reduction process after injecting CO2 into the tuyere of a blast furnace
    Jiang, Juanjuan
    Dong, Kai
    Zhu, Rong
    IRONMAKING & STEELMAKING, 2024, 51 (01) : 80 - 89
  • [47] Evaluation of CO2 sorption capacity of granite for CO2 geological sequestration
    Fujii, T.
    Sato, Y.
    Lin, H.
    Sasaki, K.
    Takahashi, T.
    Inoniatat, H.
    Hashida, T.
    WATER DYNAMICS, 2007, 898 : 79 - +
  • [48] Exploration of CO2 emission reduction pathways: identification of influencing factors of CO2 emission and CO2 emission reduction potential of power industry
    Weijun Wang
    Qing Tang
    Bing Gao
    Clean Technologies and Environmental Policy, 2023, 25 : 1589 - 1603
  • [49] Direct reduction process using fines and with reduced CO2 emission
    Morrison, A
    Hietkamp, S
    van Vuuren, DS
    IRONMAKING & STEELMAKING, 2004, 31 (04) : 285 - 290
  • [50] Supercritical Carbonation of Steelmaking Slag for the CO2 Sequestration
    Kim, Jihye
    Azimi, Gisele
    REWAS 2022: DEVELOPING TOMORROW'S TECHNICAL CYCLES, VOL I, 2022, : 565 - 571