Multi-factor impact mechanism on combustion efficiency of a hydrogen-fueled micro-cylindrical combustor

被引:87
|
作者
Zuo, Wei [1 ,2 ,3 ]
Li, Jing [1 ,2 ,3 ]
Zhang, Yuntian [1 ,2 ,3 ]
Li, Qingqing [1 ,2 ,3 ]
Jia, Shuyuan [1 ,2 ,3 ]
He, Zhu [1 ,2 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Natl Provincial Joint Engn Res Ctr High Temp Mat, Wuhan, Peoples R China
[3] Wuhan Univ Sci & Technol, Key Lab Ferrous Met & Resources Utilizat, Minist Educ, Wuhan 430081, Peoples R China
关键词
Micro-cylindrical combustor; Taguchi experimental design; Grey relational analysis; Analysis of variance; Combustion efficiency; 3-DIMENSIONAL COPPER NANODOMES; GREY RELATIONAL ANALYSIS; LEAN H-2/AIR FLAMES; NUMERICAL INVESTIGATIONS; PREMIXED COMBUSTION; THERMAL PERFORMANCE; ENTROPY; WALL; CHANNEL; DESIGN;
D O I
10.1016/j.ijhydene.2019.11.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As it is important to achieve higher combustion efficiency for applications of micro cylindrical combustor, the multi-factor impact mechanism on the combustion efficiency of a hydrogen-fuelled micro-cylindrical combustor is investigated in this work. Firstly, six factors such as hydrogen/air equivalence ratio, inlet velocity, inlet temperature, wall thermal conductivity, wall emissivity and convective heat transfer coefficient of outer wall and five levels of each factor are determined. Orthogonal design table L-25(5(6)) is introduced to arrange cases. Secondly, grey relational analysis is adopted to investigate the effects of the six factors on combustion efficiency. Finally, the results of grey relational analysis are validated by analysis of variance. Based on grey relational analysis and analysis of variance, it is determined that the impact ranking from the largest to the smallest is hydrogen/air equivalence ratio, inlet velocity and inlet temperature, followed by the other three factors. The impact of wall thermal conductivity, convective heat transfer coefficient of outer wall and wall emissivity is considered to be equal due to their difference of impact on combustion efficiency is very small. This work provides us significant reference for optimizing combustion efficiency of a hydrogen-fuelled micro-cylindrical combustor. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2319 / 2330
页数:12
相关论文
共 50 条
  • [21] Effects of auto-ignition on combustion characteristics in a hydrogen-fueled dual-mode scramjet combustor
    Wang, Yanan
    Wang, Zhenguo
    Sun, Mingbo
    Wang, Hongbo
    ACTA ASTRONAUTICA, 2018, 153 : 154 - 158
  • [22] Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic
    Peng, Qingguo
    Xie, Bo
    Yang, Wenming
    Tang, Shihao
    Li, Zhenwei
    Zhou, Peng
    Luo, Ningkang
    RENEWABLE ENERGY, 2021, 174 : 391 - 402
  • [23] Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic
    Xie, Bo
    Peng, Qingguo
    Yang, Wenming
    Li, Shaobo
    E, Jiaqiang
    Li, Zhenwei
    Tao, Meng
    Zhang, Ansi
    ENERGY, 2022, 239
  • [24] Effects of structure parameters of tube outlet on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications
    Zuo, Wei
    Chen, Zhijie
    Jiaqiang, E.
    Li, Qingqing
    Zhang, Guangde
    Huang, Yuhan
    ENERGY, 2023, 266
  • [25] Orthogonal Experimental Design and Fuzzy Grey Relational Analysis for emitter efficiency of the micro-cylindrical combustor with a step
    Zuo, Wei
    E, Jiaqiang
    Liu, Xueling
    Peng, Qingguo
    Deng, Yuanwang
    Zhu, Hao
    APPLIED THERMAL ENGINEERING, 2016, 103 : 945 - 951
  • [26] Combustion modes periodical transition in a hydrogen-fueled scramjet combustor with rear-wall-expansion cavity flameholder
    Wang, Taiyu
    Li, Guangxin
    Yang, Yixin
    Wang, Zhenguo
    Cai, Zun
    Sun, Mingbo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (04) : 3209 - 3215
  • [27] Numerical investigations on the beating behavior of self-excited combustion instability in a hydrogen-fueled Rijke type combustor
    Song, Xiuyang
    Zhu, Tong
    Pan, Deng
    Wang, Ziyu
    Ji, Chenzhen
    Zhao, Dan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 126
  • [28] Assessing combustion stability and the impact of fuel slip in a hydrogen-fueled heavy duty internal combustion engine
    Bunce, M. P.
    Peters, N. D.
    Blaxill, H. R.
    POWERTRAIN SYSTEMS FOR A SUSTAINABLE FUTURE, 2024, : 363 - 372
  • [29] Numerical investigations on thermal performance and flame stability of hydrogen-fueled micro tube combustor with injector for thermophotovoltaic applications
    Zuo, Wei
    Zhao, Hongshuo
    E, Jiaqiang
    Li, Qingqing
    Li, Dexin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (39) : 17454 - 17467
  • [30] Numerical investigations on the performance enhancement of a hydrogen-fueled micro planar combustor with finned bluff body for thermophotovoltaic applications
    Zuo, Wei
    Wang, Zijie
    Li, Qingqing
    Zhou, Kun
    Huang, Yuhan
    ENERGY, 2024, 293