Automatic crater classification framework based on shape parameters

被引:0
|
作者
Purohit, Suchit [1 ]
Gandhi, Savita [1 ]
Chauhan, Prakash [2 ]
机构
[1] Gujarat Univ, Dept Comp Sci, Ahmadabad 380015, Gujarat, India
[2] Indian Space Res Org, Indian Inst Remote Sensing, Dehra Dun 248001, Uttar Pradesh, India
来源
CURRENT SCIENCE | 2018年 / 115卷 / 07期
关键词
Classification algorithms; computational intelligence; impact craters; shape parameters;
D O I
10.18520/cs/v115/i7/1351-1358
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This communication presents a framework for automatically classifying a crater image into one of its preservation states namely fresh, floor-fractured and degraded introducing a class of algorithms known as crater classification algorithms (CCA). This study involves identification of discriminatory parameters of classes, development and implementation of algorithms to automatically evaluate the parameters from a given Digital Elevation Model testing on representative craters of each class and evolve a decision tree framework for automatically classifying given crater image into its preservation class. This classification can be applied to craters that exhibit ambiguous topographies to test whether they were formed by impact erosion or igneous modification.
引用
收藏
页码:1351 / 1358
页数:9
相关论文
共 50 条
  • [21] Collaborative framework for automatic classification of respiratory sounds
    Ntalampiras, Stavros
    IET SIGNAL PROCESSING, 2020, 14 (04) : 223 - 228
  • [22] A unified framework for uncertainty propagation in automatic shape tracking
    Zhou, XS
    Comaniciu, D
    Xie, B
    Cruceanu, R
    Gupta, A
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, : 872 - 879
  • [23] Automatic feature selection for biological shape classification in ΣYNERGOS
    Bruno, OM
    Junior, RMC
    Consularo, LA
    Costa, LD
    SIBGRAPI '98 - INTERNATIONAL SYMPOSIUM ON COMPUTER GRAPHICS, IMAGE PROCESSING, AND VISION, PROCEEDINGS, 1998, : 363 - 370
  • [24] AUTOMATIC DISCERNING OF SHAPE AND CLASSIFICATION OF SIZE OF PARTICULATE MATERIALS
    PHILIPP, B
    TEICHGRABER, M
    UNGER, EW
    STILLER, HJ
    PAPIER, 1985, 39 (06): : 254 - 261
  • [25] A crater region detection algorithm based on automatic feature learning
    Lu T.
    Zhang Y.
    Yan Y.
    Yang L.
    Yang W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (05): : 939 - 952
  • [26] Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification
    Huy Phan
    Andreotti, Fernando
    Cooray, Navin
    Chen, Oliver Y.
    De Vos, Maarten
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (05) : 1285 - 1296
  • [27] AUTOMATIC MEASUREMENT OF SHAPE PARAMETERS FOR HYDRAULIC TORQUE CONVERTER
    Zhang, Haining
    Bai, Fu
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2016, 9 (01) : 88 - 106
  • [28] An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images
    Wang, Liansheng
    Li, Shusheng
    Chen, Rongzhen
    Liu, Sze-Yu
    Chen, Jyh-Cheng
    PLOS ONE, 2016, 11 (06):
  • [29] Tensor-Based Learning Framework for Automatic Multichannel Volcano-Seismic Classification
    Teixeira Peixoto, Antonio Augusto
    Rolim Fernandes, Carlos Alexandre
    Espinoza Lara, Pablo Eduardo
    Inza, Adolfo
    Mars, Jerome, I
    Metaxian, Jean-Philippe
    Dalla Mura, Mauro
    Malfante, Marielle
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4517 - 4529
  • [30] AUTODC: an automatic machine learning framework for disease classification
    Bai, Yang
    Li, Yang
    Shen, Yu
    Yang, Mingyu
    Zhang, Wentao
    Cui, Bin
    BIOINFORMATICS, 2022, 38 (13) : 3415 - 3421