Automatic crater classification framework based on shape parameters

被引:0
|
作者
Purohit, Suchit [1 ]
Gandhi, Savita [1 ]
Chauhan, Prakash [2 ]
机构
[1] Gujarat Univ, Dept Comp Sci, Ahmadabad 380015, Gujarat, India
[2] Indian Space Res Org, Indian Inst Remote Sensing, Dehra Dun 248001, Uttar Pradesh, India
来源
CURRENT SCIENCE | 2018年 / 115卷 / 07期
关键词
Classification algorithms; computational intelligence; impact craters; shape parameters;
D O I
10.18520/cs/v115/i7/1351-1358
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This communication presents a framework for automatically classifying a crater image into one of its preservation states namely fresh, floor-fractured and degraded introducing a class of algorithms known as crater classification algorithms (CCA). This study involves identification of discriminatory parameters of classes, development and implementation of algorithms to automatically evaluate the parameters from a given Digital Elevation Model testing on representative craters of each class and evolve a decision tree framework for automatically classifying given crater image into its preservation class. This classification can be applied to craters that exhibit ambiguous topographies to test whether they were formed by impact erosion or igneous modification.
引用
收藏
页码:1351 / 1358
页数:9
相关论文
共 50 条
  • [1] Shape parameters for automatic classification of snow particles into snowflake and graupel
    Nurzynska, Karolina
    Kubo, Mamoru
    Muramoto, Ken-ichiro
    METEOROLOGICAL APPLICATIONS, 2013, 20 (03) : 257 - 265
  • [2] AUTOMATIC CLASSIFICATION OF VERTEBRAL SHAPE BASED ON STATISTICAL SHAPE MODELLING
    Haslam, Jane
    Hayes, Curtis
    Ozanian, Takouhi
    Miller, Colin
    Krasnow, Joel
    Cope, Rebecca
    Brett, Alan
    OSTEOPOROSIS INTERNATIONAL, 2009, 20 : S203 - S203
  • [3] An Automatic Aerodynamic Shape Optimisation Framework Based on DAKOTA
    Xia, C. C.
    Gou, Y. J.
    Li, S. H.
    Chen, W. F.
    Shao, C.
    2018 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN DESIGN, MECHANICAL AND AERONAUTICAL ENGINEERING (ATDMAE 2018), 2018, 408
  • [4] Automatic detection and classification of grains of pollen based on shape and texture
    Rodriguez-Damian, Maria
    Cernadas, Eva
    Formella, Arno
    Fernandez-Delgado, Manuel
    De Sa-Otero, Pilar
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2006, 36 (04): : 531 - 542
  • [5] Automatic classification of grain sample elements based on color and shape properties
    Mladenov, Miroljub
    Penchev, Stanislav
    Dejanov, Martin
    Mustafa, Metin
    UPB Scientific Bulletin, Series C: Electrical Engineering, 2011, 73 (04): : 39 - 54
  • [6] A framework for mutational signature analysis based on DNA shape parameters
    Karolak, Aleksandra
    Levatic, Jurica
    Supek, Fran
    PLOS ONE, 2022, 17 (01):
  • [7] AUTOMATIC CLASSIFICATION OF GRAIN SAMPLE ELEMENTS BASED ON COLOR AND SHAPE PROPERTIES
    Mladenov, Miroljub
    Penchev, Stanislav
    Dejanov, Martin
    Mustafa, Metin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2011, 73 (04): : 39 - 54
  • [8] New automatic defect classification algorithm based on a classification-after-segmentation framework
    Lee, Sang-Hak
    Koo, Hyung-Il
    Cho, Nam-Ik
    JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (02)
  • [9] An Automatic Software Vulnerability Classification Framework
    Davari, Maryam
    Zulkernine, Mohammad
    Jaafar, Fehmi
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON SOFTWARE SECURITY AND ASSURANCE (ICSSA), 2017, : 44 - 49
  • [10] A Transformer and Convolution-Based Learning Framework for Automatic Modulation Classification
    Ma, Wenxuan
    Cai, Zhuoran
    Wang, Chuan
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (06) : 1392 - 1396