Tree convolution for probability distributions with unbounded support

被引:0
|
作者
Davis, Ethan [1 ]
Jekel, David [2 ]
Wang, Zhichao [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
non-commutative probability; free convolution; Bercovici-Pata bijection; Cauchy transform; domain of attraction; MONOTONE CONVOLUTION; INFINITE-DIVISIBILITY; LIMIT-THEOREMS; FREE PRODUCT; INDEPENDENCE; SUBORDINATION; REGULARITY; ATOMS;
D O I
10.30757/ALEA.v18-58
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop the complex-analytic viewpoint on the tree convolutions studied by the second author and Weihua Liu in Jekel and Liu (2020), which generalize the free, boolean, monotone, and orthogonal convolutions. In particular, for each rooted subtree T of the N -regular tree (with vertices labeled by alternating strings), we define the convolution (sic)(T) (mu(1) ..., mu(N)) for arbitrary probability measures mu(1),..., mu(N) on R using a certain fixed-point equation for the Cauchy transforms. The convolution operations respect the operad structure of the tree operad from Jekel and Liu (2020). We prove a general limit theorem for iterated T -free convolution similar to Bercovici and Pata's results in the free case Bercovici and Pata (1999), and we deduce limit theorems for measures in the domain of attraction of each of the classical stable laws.
引用
收藏
页码:1585 / 1623
页数:39
相关论文
共 50 条
  • [21] On unbounded probability theory
    Maslov, V. P.
    MATHEMATICAL NOTES, 2012, 92 (1-2) : 59 - 63
  • [22] On unbounded probability theory
    V. P. Maslov
    Mathematical Notes, 2012, 92 : 59 - 63
  • [23] ON THE CONVOLUTION OF DISTRIBUTIONS
    ORTNER, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (12): : 533 - 536
  • [24] CONVOLUTION OF DISTRIBUTIONS
    HORVATH, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 1974, 98 (03): : 183 - 192
  • [25] CONVOLUTION OF DISTRIBUTIONS
    ROIDER, B
    BULLETIN DES SCIENCES MATHEMATIQUES, 1976, 100 (03): : 193 - 199
  • [26] ON THE CONVOLUTION OF DISTRIBUTIONS
    TEICHER, H
    ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04): : 775 - 778
  • [27] Binary tree of posterior probability support vector machines
    Wang, Dong-li
    Zheng, Jian-guo
    Zhou, Yan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2011, 12 (02): : 83 - 87
  • [28] Binary tree of posterior probability support vector machines
    Dong-li Wang
    Jian-guo Zheng
    Yan Zhou
    Journal of Zhejiang University SCIENCE C, 2011, 12 : 83 - 87
  • [29] CONVOLUTION EQUATIONS IN SPACES OF DISTRIBUTIONS WITH ONE-SIDED BOUNDED SUPPORT
    SHAMBAYATI, R
    ZIELEZNY, Z
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (02) : 707 - 713
  • [30] A new non-parametric detector of univariate outliers for distributions with unbounded support
    Bardet, Jean-Marc
    Dimby, Solohaja-Faniaha
    EXTREMES, 2017, 20 (04) : 751 - 775