On trajectories of analytic gradient vector fields on analytic manifolds

被引:1
|
作者
Nowel, A [1 ]
Szafraniec, Z [1 ]
机构
[1] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
singularities; gradient vector fields;
D O I
10.12775/TMNA.2005.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f: M -> R be an analytic proper function defined in a neighbourhood of a closed "regular" (for instance semi-analytic or sub-analytic) set P subset of f(-1)(y). We show that the set of non-trivial trajectories of the equation = del f(x) attracted by P has the same Cech-Alexander cohomology groups as Omega n {f < y}, where Omega is an appropriately choosen neighbourhood of P. There are also given necessary conditions for existence of a trajectory joining two closed "regular" subsets of M.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 50 条
  • [21] Analytic linearizability of some resonant vector fields
    Basto-Gonçalves, J
    Cruz, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) : 2473 - 2481
  • [22] Analytic automorphisms of generated by polynomial vector fields
    Bustinduy, Alvaro
    ARCHIV DER MATHEMATIK, 2016, 107 (03) : 251 - 258
  • [23] A note on analytic integrability of planar vector fields
    Algaba, A.
    Garcia, C.
    Reyes, M.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 : 555 - 562
  • [24] Indices of Vector Fields on Real Analytic Varieties
    Brasselet, Jean-Paul
    Seade, Jose
    Suwa, Tatsuo
    VECTOR FIELDS ON SINGULAR VARIETIES, 2009, 1987 : 71 - 83
  • [25] GRADIENT VECTOR-FIELDS ON COSYMPLECTIC MANIFOLDS
    CANTRIJN, F
    DELEON, M
    LACOMBA, EA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (01): : 175 - 188
  • [26] Gradient vector fields with pulse action on manifolds
    Sharko, Yu. V.
    NONLINEAR OSCILLATIONS, 2009, 12 (01): : 137 - 147
  • [27] Some remarks on global analytic planar vector fields possessing an invariant analytic set
    Garcia, Isaac A.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2021, 36 (02): : 204 - 211
  • [28] Zero sets of Lie algebras of analytic vector fields on real and complex two-dimensional manifolds
    Hirsch, Morris W.
    Turiel, F-J
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 954 - 979
  • [29] TRAJECTORIES IN INTERLACED INTEGRAL PENCILS OF 3-DIMENSIONAL ANALYTIC VECTOR FIELDS ARE O-MINIMAL
    Le Gal, Olivier
    Sanz, Fernando
    Speissegger, Patrick
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) : 2211 - 2229
  • [30] Invariant manifolds for analytic dynamical systems over ultrametric fields
    Gloeckner, Helge
    EXPOSITIONES MATHEMATICAE, 2013, 31 (02) : 116 - 150