Percolation and critical behaviour in SU(2) gauge theory

被引:18
|
作者
Fortunato, S [1 ]
Karsch, F [1 ]
Petreczky, P [1 ]
Satz, H [1 ]
机构
[1] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
关键词
D O I
10.1016/S0920-5632(01)00984-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The paramagnetic-ferromagnetic transition in the Ising model can be described as percolation of suitably defined clusters. We have tried to extend such picture to the confinement-deconfinement transition of SU(2) pure gauge theory, which is in the same universality class of the Ising model. The cluster definition is derived by approximating SU(2) by means of Ising-like effective theories. The geometrical transition of such clusters turns out to describe successfully the thermal counterpart for two different lattice regularizations of (3 + 1)-d SU(2).
引用
收藏
页码:398 / 401
页数:4
相关论文
共 50 条
  • [21] Vortices in SU(2) lattice gauge theory
    Cheluvaraja, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 490 - 493
  • [22] Improved thermodynamics of SU(2) gauge theory
    Giudice, Pietro
    Piemonte, Stefano
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (12):
  • [23] The interaction of dyons in the SU(2) gauge theory
    Martemyanov, B
    Molodtsov, S
    Simonov, Y
    Veselov, A
    JETP LETTERS, 1995, 62 (09) : 695 - 700
  • [24] Random percolation as a gauge theory
    Gliozzi, F
    Lottini, S
    Panero, M
    Rago, A
    NUCLEAR PHYSICS B, 2005, 719 (03) : 255 - 274
  • [25] Propagators in Coulomb gauge from SU(2) lattice gauge theory
    Langfeld, K
    Moyaerts, L
    PHYSICAL REVIEW D, 2004, 70 (07):
  • [26] Interpolating between MAG and no-gauge in SU(2) gauge theory
    Mitrjushkin, VK
    Veselov, AI
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 876 - 878
  • [27] ELECTROWEAK GAUGE-THEORY OUT OF SU(2/1) GAUGE-THEORY
    NAKA, S
    CHUJYOU, H
    KAN, H
    PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (03): : 643 - 659
  • [28] A STRAIGHTFORWARD WAY TO EVALUATE SOME CRITICAL PARAMETERS IN SU(2) LATTICE GAUGE-THEORY
    ENGELS, J
    NUCLEAR PHYSICS B, 1993, : 347 - 350
  • [29] Testing Dimensional Reduction in SU(2) gauge theory
    Kratochvila, S
    de Forcrand, P
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 522 - 524
  • [30] SU(2) gauge theory of gravity with topological invariants
    Sengupta, Sandipan
    LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360