Computing the Integer Hull of Convex Polyhedral Sets

被引:0
|
作者
Maza, Marc Moreno [1 ]
Wang, Linxiao [1 ]
机构
[1] Univ Western Ontario, London, ON, Canada
关键词
Polyhedral set; Integer hull; Parametric polyhedron; POINTS; ALGORITHM; LATTICE;
D O I
10.1007/978-3-031-14788-3_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss a new algorithm for computing the integer hull P-I of a rational polyhedral set P, together with its implementation in Maple and in the C programming language. Our implementation focuses on the two-dimensional and three-dimensional cases. We show that our algorithm computes the integer hull efficiently and can deal with polyhedral sets with large numbers of integer points.
引用
收藏
页码:246 / 267
页数:22
相关论文
共 50 条
  • [31] Integer optimization on convex semialgebraic sets
    Khachiyan, L
    Porkolab, L
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (02) : 207 - 224
  • [32] Polyhedral approximation in mixed-integer convex optimization
    Lubin, Miles
    Yamangil, Emre
    Bent, Russell
    Vielma, Juan Pablo
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 139 - 168
  • [33] Polyhedral approximation in mixed-integer convex optimization
    Miles Lubin
    Emre Yamangil
    Russell Bent
    Juan Pablo Vielma
    Mathematical Programming, 2018, 172 : 139 - 168
  • [34] Computing compromise sets in polyhedral framework
    Blasco, F
    Cuchillo-Ibáñez, E
    Morón, MA
    Romero, C
    APPLIED MATHEMATICS LETTERS, 2000, 13 (05) : 93 - 98
  • [35] Some results on the convex hull of finitely many convex sets
    Borbely, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (05) : 1515 - 1525
  • [37] Separation of convex polyhedral sets with column parameters
    Hladik, Milan
    KYBERNETIKA, 2008, 44 (01) : 113 - 130
  • [38] OUTER APPROXIMATION BY POLYHEDRAL CONVEX-SETS
    HORST, R
    THOAI, NV
    TUY, H
    OR SPEKTRUM, 1987, 9 (03) : 153 - 159
  • [39] Separation of convex polyhedral sets with uncertain data
    Hladik, Milan
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2006, 2006, : 227 - 234
  • [40] EXPECTED MEAN WIDTH OF THE RANDOMIZED INTEGER CONVEX HULL
    Ngoc, Binh Hong
    Reitzner, Matthias
    MATHEMATIKA, 2021, 67 (02) : 422 - 433