Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins

被引:65
|
作者
Ali, Abdullah Masoud [1 ,2 ]
Angelino, Matteo [1 ]
Rona, Aldo [1 ]
机构
[1] Univ Leicester, Sch Engn, Leicester LE1 7RH, Leics, England
[2] Sabrataha Univ, Fac Engn, Sabrataha, Libya
基金
英国工程与自然科学研究理事会;
关键词
Microchannel heat sink; Nanofluid; Fins; Pressure drop; Conjugate heat transfer model; Computational fluid dynamics; TRANSFER AUGMENTATION; GEOMETRIC PARAMETERS; ENTROPY GENERATION; LAMINAR-FLOW; CAVITIES; OPTIMIZATION; SINGLE; RIBS;
D O I
10.1016/j.applthermaleng.2021.117458
中图分类号
O414.1 [热力学];
学科分类号
摘要
The hydraulic and thermal performance of microchannel heat sink configurations for high performance elec-tronic cooling applications is investigated by numerical modelling. Conjugate heat transfer simulations are ob-tained through the silicon walls and the fluid domain of a square base prism heat sink traversed by 50 parallel rectangular cooling ducts, under a 150 W/cm(2) constant heat flux input through the base. Al2O3 nanofluid coolant with a nanoparticle volume fraction ranging from 0 to 3% is supplied at 298 K, over the Reynolds number range 100 to 350, modelled as a single-phase homogeneous medium. Rectangular, twisted, and zig-zag fins are inserted into the plain rectangular duct to enhance the heat transfer rate. The zig-zag fin and 3% Al2O3 nanofluid provide the best thermal performance, with a 6.44 K lower average heated wall contact temperature, 60% higher Nusselt number, and 15% higher second law efficiency than without fins and plain water cooling. Twist in the micro-channel fin unexpectedly reduced the microchannel pressure drop by 2% to 15% compared to a straight fin, possibly due to the more evenly distributed axial mass flux across the microchannel.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid
    M. Ghanbarpour
    R. Khodabandeh
    K. Vafai
    Heat and Mass Transfer, 2017, 53 : 973 - 983
  • [22] Fluid Flow and Entropy Generation Analysis of Al2O3-Water Nanofluid in Microchannel Plate Fin Heat Sinks
    Ma, Hao
    Duan, Zhipeng
    Su, Liangbin
    Ning, Xiaoru
    Bai, Jiao
    Lv, Xianghui
    ENTROPY, 2019, 21 (08)
  • [23] An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink
    Ho, C. J.
    Chen, W. C.
    APPLIED THERMAL ENGINEERING, 2013, 50 (01) : 516 - 522
  • [24] An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid
    Ghanbarpour, M.
    Khodabandeh, R.
    Vafai, K.
    HEAT AND MASS TRANSFER, 2017, 53 (03) : 973 - 983
  • [25] Experimental study on heat transfer performance of a series combined microchannel heat dissipation system based on Al2O3 nanofluid
    Tan, Peng
    Liu, Xinhui
    Liu, Changyi
    Feng, Jiyu
    Yang, Kuo
    APPLIED THERMAL ENGINEERING, 2024, 240
  • [26] Numerical Investigation of Forced Convective Heat Transfer and Performance Evaluation Criterion of Al2O3/Water Nanofluid Flow inside an Axisymmetric Microchannel
    Shahrestani, Misagh Irandoost
    Maleki, Akbar
    Shadloo, Mostafa Safdari
    Tlili, Iskander
    SYMMETRY-BASEL, 2020, 12 (01):
  • [27] The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids
    Xia, G. D.
    Liu, R.
    Wang, J.
    Du, M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 76 : 256 - 264
  • [28] A numerical simulation of heat transfer enhancement using Al2O3 nanofluid
    Hussain T.
    Javed M.T.
    Nanoscience and Nanotechnology - Asia, 2020, 10 (05): : 610 - 621
  • [29] Investigation of Heat Transfer in Serpentine Shaped Microchannel Using Al2O3/Water Nanofluid
    Sivakumar, A.
    Alagumurthi, N.
    Senthilvelan, T.
    HEAT TRANSFER-ASIAN RESEARCH, 2016, 45 (05): : 424 - 433
  • [30] Laminar convective heat transfer characteristic of Al2O3/water nanofluid in a circular microchannel
    Trinavee, K.
    Gogoi, T. K.
    Pandey, M.
    XXVII IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2015), 2016, 759