Energy dissipation in mechanical loading of nano-grained graphene sheets

被引:2
|
作者
Yang, Zhi [1 ]
Huang, Yuhong [2 ]
Ma, Fei [1 ,3 ]
Miao, Yaping [1 ,3 ]
Bao, Hongwei [1 ]
Xu, Kewei [1 ,4 ]
Chu, Paul K. [3 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Coll Phys & Informat Technol, Xian 710062, Shaanxi, Peoples R China
[3] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[4] Xian Univ Arts & Sci, Dept Phys & Opt Elect Engn, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
INTRINSIC STRENGTH; FUNCTIONALIZED GRAPHENE; ELASTIC PROPERTIES; BOUNDARIES; DEFORMATION; SIZE; TRANSPORT; DYNAMICS; FRACTURE;
D O I
10.1039/c6ra05167g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A molecular dynamics (MD) simulation illustrates that different from single-crystal graphene sheets, the loading and unloading stress-strain curves of nanocrystalline ones do not coincide with each other, indicating substantial energy dissipation due to irreversible structural changes in the grain boundaries. An energy dissipation coefficient is proposed to quantitatively describe the effects of the grain size, temperature and strain rate dependent irreversible breaking and reforming of bonds in GBs, realignment of grain orientation, lattice-shearing-induced phase transformation, and formation of Stone-Wales defects and vacancies near GBs. The energy dissipation coefficient increases as the grain size decreases, especially at high temperature and low strain rate, and consequently, the reversibility of nanocrystalline graphene sheets under mechanical loading deteriorates compared to single-crystal graphene.
引用
收藏
页码:60856 / 60861
页数:6
相关论文
共 50 条
  • [21] Alleviation of Mechanical Anisotropy in Ultrafine/Nano-grained AZ31 Magnesium Alloy
    Fatemi, S. M.
    Zarei-Hanzaki, A.
    Eskandari, M.
    Haghshenas, M.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (08) : 4270 - 4279
  • [22] Understanding Mechanical Properties of Nano-Grained Bainitic Steels from Multiscale Structural Analysis
    Caballero, Francisca G.
    Rementeria, Rosalia
    Morales-Rivas, Lucia
    Benito-Alfonso, Miguel
    Yang, Jer-Ren
    de Castro, David
    Poplawsky, Jonathan D.
    Sourmail, Thomas
    Garcia-Mateo, Carlos
    METALS, 2019, 9 (04):
  • [23] Thermal stability and growth of nano-grained structures produced by mechanical alloying of Nb and Al
    Saida, J
    Tanaka, Y
    Okazaki, K
    MATERIALS TRANSACTIONS JIM, 1996, 37 (03): : 265 - 270
  • [24] Thermal stability and growth of nano-grained structures produced by mechanical alloying of Nb and Al
    Nishhin Steel Co, Ltd, Chiba, Japan
    Mater Trans JIM, 3 (265-270):
  • [25] Alleviation of Mechanical Anisotropy in Ultrafine/Nano-grained AZ31 Magnesium Alloy
    S. M. Fatemi
    A. Zarei-Hanzaki
    M. Eskandari
    M. Haghshenas
    Journal of Materials Engineering and Performance, 2018, 27 : 4270 - 4279
  • [26] Grain boundary relaxation in doped nano-grained aluminum
    Ye, Wenye
    Hohl, Jake
    Misra, Mano
    Liao, Yiliang
    Mushongera, Leslie T.
    MATERIALS TODAY COMMUNICATIONS, 2021, 29
  • [27] Nano-grained perovskite LEDs shine more brightly
    Sealy, Cordelia
    NANO TODAY, 2017, 13 : 5 - 5
  • [28] Fatigue behavior of nano-grained copper prepared by ECAP
    Han, Seung Zeon
    Goto, Masahiro
    Lim, Chayong
    Kim, Chang Joo
    Kim, Sangshik
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 434 (SPEC. ISS.) : 304 - 306
  • [29] Strain-induced coarsening in nano-grained films
    Jin, M.
    Minor, A. M.
    Morris, J. W., Jr.
    THIN SOLID FILMS, 2007, 515 (06) : 3202 - 3207
  • [30] Modelling the Shear Banding in Gradient Nano-Grained Metals
    Chen, Tianyu
    Li, Jianjun
    NANOMATERIALS, 2021, 11 (10)