PREDICTING EMBRYO MORPHOKINETIC ANNOTATIONS FROM TIME-LAPSE VIDEOS USING CONVOLUTIONAL NEURAL NETWORKS.

被引:6
|
作者
Gingold, J. A. [1 ]
Ng, N. H. [2 ]
McAuley, J. [2 ]
Lipton, Z. [3 ]
Desai, N. [4 ]
机构
[1] Cleveland Clin Fdn, Womens Hlth Inst, 9500 Euclid Ave, Cleveland, OH 44195 USA
[2] Univ Calif San Diego, Comp Sci Dept, La Jolla, CA 92093 USA
[3] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
[4] Cleveland Clin, OB GYN, Beachwood, OH USA
关键词
D O I
10.1016/j.fertnstert.2018.07.634
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
P-282
引用
收藏
页码:E220 / E220
页数:1
相关论文
共 50 条
  • [41] Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks
    Xiong, Wei
    Luo, Wenhan
    Ma, Lin
    Liu, Wei
    Luo, Jiebo
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2364 - 2373
  • [42] PREDICTING TONGUE MOTION IN UNLABELED ULTRASOUND VIDEOS USING CONVOLUTIONAL LSTM NEURAL NETWORKS
    Zhao, Chaojie
    Zhang, Peng
    Zhu, Jian
    Wu, Chengrui
    Wang, Huaimin
    Xu, Kele
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5926 - 5930
  • [43] Impact of Obesity on Embryo Morphokinetics using Time-Lapse Imaging.
    Hutchinson, Anne P.
    Kimelman, Dana
    Confino, Rafael
    Zhang, John
    Boots, Christina E.
    Pavone, Mary Ellen
    REPRODUCTIVE SCIENCES, 2019, 26 : 371A - 371A
  • [44] Morphokinetic parameters from a time-lapse monitoring system cannot accurately predict the ploidy of embryos
    Jingye Zhang
    Wenrong Tao
    Hui Liu
    Guanling Yu
    Mei Li
    Shuiying Ma
    Keliang Wu
    Journal of Assisted Reproduction and Genetics, 2017, 34 : 1173 - 1178
  • [45] Morphokinetic parameters from a time-lapse monitoring system cannot accurately predict the ploidy of embryos
    Zhang, Jingye
    Tao, Wenrong
    Liu, Hui
    Yu, Guanling
    Li, Mei
    Ma, Shuiying
    Wu, Keliang
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2017, 34 (09) : 1173 - 1178
  • [46] Real time violence detection in surveillance videos using Convolutional Neural Networks
    Irfanullah
    Hussain, Tariq
    Iqbal, Arshad
    Yang, Bailin
    Hussain, Altaf
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 38151 - 38173
  • [47] Inferring dissipation maps from videos using convolutional neural networks
    Bae, Youngkyoung
    Kim, Dong-Kyum
    Jeong, Hawoong
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [48] Deep learning system for classification of ploidy status using time-lapse videos
    Paya, Elena
    Pulgarin, Cristian
    Bori, Lorena
    Colomer, Adrian
    Naranjo, Valery
    Meseguer, Marcos
    F&S SCIENCE, 2023, 4 (03): : 211 - 218
  • [49] External validation of a time-lapse model; a retrospective study comparing embryo evaluation using a morphokinetic model to standard morphology with live birth as endpoint
    Adolfsson, Emma
    Porath, Sandra
    Andershed, Anna Nowosad
    JORNAL BRASILEIRO DE REPRODUCAO ASSISTIDA, 2018, 22 (03): : 205 - 214
  • [50] Fully automated snow depth measurements from time-lapse images applying a convolutional neural network
    Kopp, Matthias
    Tuo, Ye
    Disse, Markus
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 697