机构:
Univ Paris 07, Inst Math Jussieu Paris Rive Gauche, UMR 7586, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, FranceUniv Paris 07, Inst Math Jussieu Paris Rive Gauche, UMR 7586, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, France
Chaudouard, Pierre-Henri
[1
]
Laumon, Gerard
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, Batiment 425, F-91405 Orsay, France
Univ Paris 11, UMR 8628, Math, Batiment 425, F-91405 Orsay, FranceUniv Paris 07, Inst Math Jussieu Paris Rive Gauche, UMR 7586, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, France
Laumon, Gerard
[2
,3
]
机构:
[1] Univ Paris 07, Inst Math Jussieu Paris Rive Gauche, UMR 7586, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, France
[2] CNRS, Batiment 425, F-91405 Orsay, France
[3] Univ Paris 11, UMR 8628, Math, Batiment 425, F-91405 Orsay, France
This paper is concerned with two problems. One is to count Hitchin bundles on a projective curve and the other is to get an explicit formula for the nilpotent part of the Arthur-Selberg trace formula for a simple test function. The fact that the two problems are indeed related has been noticed in a previous paper cf. [Chaudouard, Sur le comptage des fibres de Hitchin. A paraitre aux actes de la conference en l'honneur de Gerard Laumon]. We expand the nilpotent part of the Arthur-Selberg trace formula in a sum of adelic integrals indexed by nilpotent orbits. For "regular by blocks" orbits, we get an explicit formula for these integrals in terms of the zeta function of the curve.