VIDEO EVENT DETECTION USING A SUBCLASS RECODING ERROR-CORRECTING OUTPUT CODES FRAMEWORK

被引:0
|
作者
Gkalelis, Nikolaos [1 ,2 ]
Mezaris, Vasileios [1 ]
Dimopoulos, Michail [1 ]
Kompatsiaris, Ioannis [1 ]
Stathaki, Tania [2 ]
机构
[1] CERTH, Inst Informat Technol, Thermi 57001, Greece
[2] Univ London Imperial Coll Sci, Elect & Elect Engn Dept, London SW7 2AZ, England
关键词
Semantic model vectors; event detection; subclass error-correcting output codes; loss-weighted decoding; recoding; concept detectors;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, complex video events are learned and detected using a novel subclass recoding error-correcting outputs (SRECOC) design. In particular, a set of pre-trained concept detectors along different low-level visual feature types are used to provide a model vector representation of video signals. Subsequently, a subclass partitioning algorithm is used to divide only the target event class to several subclasses and learn one subclass detector for each event subclass. The pool of the subclass detectors is then combined under a SRECOC framework to provide a single event detector. This is achieved by first exploiting the properties of the linear loss-weighted decoding measure in order to derive a probability estimate along the different event subclass detectors, and then utilizing the sum probability rule along event subclasses to retrieve a single degree of confidence for the presence of the target event in a particular test video. Experimental results on the large-scale video collections of the TRECVID Multimedia Event Detection (MED) task verify the effectiveness of the proposed method. Moreover, the effect of weak or strong concept detectors on the accuracy of the resulting event detectors is examined.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Recoding Error-Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 11 - +
  • [2] Mutual Information Measures for Subclass Error-Correcting Output Codes Classification
    Arvanitopoulos, Nikolaos
    Bouzas, Dimitrios
    Tefas, Anastasios
    ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, PROCEEDINGS, 2010, 6040 : 19 - +
  • [3] Subclass problem-dependent design for error-correcting output codes
    Escalera, Sergio
    Tax, David M. J.
    Pujol, Oriol
    Radeva, Petia
    Duin, Robert P. W.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (06) : 1041 - 1054
  • [4] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Antonio Gutierrez, Pedro
    Hervas-Martinez, Cesar
    NEURAL PROCESSING LETTERS, 2022,
  • [5] The design of soft recoding-based strategies for improving error-correcting output codes
    Liu, Kun-Hong
    Ye, Xiao-Na
    Guo, Hong-Zhou
    Wu, Qing-Qiang
    Hong, Qing-Qi
    APPLIED INTELLIGENCE, 2022, 52 (08) : 8856 - 8873
  • [6] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Javier Barbero-Gómez
    Pedro Antonio Gutiérrez
    César Hervás-Martínez
    Neural Processing Letters, 2023, 55 : 5299 - 5330
  • [7] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 3 - 13
  • [8] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5299 - 5330
  • [9] The design of soft recoding-based strategies for improving error-correcting output codes
    Kun-Hong Liu
    Xiao-Na Ye
    Hong-Zhou Guo
    Qing-Qiang Wu
    Qing-Qi Hong
    Applied Intelligence, 2022, 52 : 8856 - 8873
  • [10] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)