Bundle gerbes and Brownian motion

被引:2
|
作者
Léandre, R [1 ]
机构
[1] Univ Nancy 1, Inst Elie Carton, F-54000 Vandoeuvre Les Nancy, France
关键词
D O I
10.1142/9789812702562_0022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a stochastic line bundle on the loop space by using gerbes theory and we define the stochastic parallel transport along a diffusion on the loop space.
引用
收藏
页码:342 / 352
页数:11
相关论文
共 50 条
  • [41] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [42] Brownian motion in a Brownian crack
    Burdzy, K
    Khoshnevisan, D
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (03): : 708 - 748
  • [43] Twisted K-theory and K-theory of bundle gerbes
    Bouwknegt, P
    Carey, AL
    Mathai, V
    Murray, MK
    Stevenson, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) : 17 - 45
  • [44] Brownian Motion
    B. V. Rao
    Resonance, 2021, 26 : 89 - 104
  • [45] Brownian Motion
    Sibley, Shalamar
    MIDWEST QUARTERLY-A JOURNAL OF CONTEMPORARY THOUGHT, 2014, 55 (03): : 75 - 75
  • [46] Brownian motion
    Parisi, G
    NATURE, 2005, 433 (7023) : 221 - 221
  • [47] Brownian Motion
    Rao, B. V.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2021, 26 (01): : 89 - 104
  • [48] BROWNIAN MOTION
    HARRISON, W
    CHEMISTRY & INDUSTRY, 1947, (16) : 214 - 214
  • [49] A BROWNIAN MOTION
    WERGELAN.H
    PHYSICA NORVEGICA, 1967, 2 (02): : 134 - &
  • [50] On the Brownian Motion
    Ornstein, LS
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1919, 21 (1/5): : 96 - 108