Some mixed-type reverse-order laws for the moore-penrose inverse of a triple matrix product

被引:12
|
作者
Tian, Yongge [1 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Econ, Shanghai 200433, Peoples R China
关键词
EQUALITIES;
D O I
10.1216/rmjm/1187453116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using some rank formulas for partitioned matrices and outer inverses of a matrix, we derive necessary and sufficient conditions for a group of mixed-type reverse-order laws to hold for the Moore-Penrose inverse of a triple matrix product.
引用
收藏
页码:1327 / 1347
页数:21
相关论文
共 47 条
  • [21] A new proof of the reverse order law for Moore-Penrose inverse
    Zheng, Bing
    Xiong, Zhiping
    Advances in Matrix Theory and Applications, 2006, : 154 - 157
  • [22] REVERSE ORDER LAW FOR THE MOORE-PENROSE INVERSE IN C*-ALGEBRAS
    Mosic, Dijana
    Djordjevic, Dragan S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 92 - 111
  • [23] Identities concerning the reverse order law for the Moore-Penrose inverse
    Dincic, Nebojsa C.
    Djordjevic, Dragan S.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 439 - 445
  • [24] Reverse order laws for the Drazin inverse of a triple matrix product
    Tian, YG
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 63 (03): : 261 - 277
  • [25] Reverse order law for the weighted Moore-Penrose inverse in C *-algebras
    Mosic, Dijana
    AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 465 - 470
  • [26] Mixed-type reverse-order law of (AB)(13)
    Wang, Minghui
    Wei, Musheng
    Jia, Zhigang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) : 1691 - 1699
  • [27] PERTURBATION RESULTS AND THE FORWARD ORDER LAW FOR THE MOORE-PENROSE INVERSE OF A PRODUCT
    Castro-Gonzalez, Nieves
    Hartwig, Robert E.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 514 - 525
  • [28] On reverse-order law of tensors and its application to additive results on Moore–Penrose inverse
    Krushnachandra Panigrahy
    Debasisha Mishra
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [29] THE REVERSE ORDER LAWS AND THE MIXED-TYPE REVERSE ORDER LAWS FOR GENERALIZED INVERSES OF MULTIPLE MATRIX PRODUCTS
    Xiong, Zhiping
    Zheng, Bing
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 1085 - 1105
  • [30] Further results on the reverse order law for the Moore-Penrose inverse in rings with involution
    Mosic, Dijana
    Djordjevic, Dragan S.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1478 - 1483