Transcription System for Semi-Spontaneous Estonian Speech

被引:2
|
作者
Alumaee, Tanel [1 ]
机构
[1] Tallinn Univ Technol, Inst Cybernet, EE-19086 Tallinn, Estonia
关键词
Estonian; speech recognition; compound words; RECOGNITION;
D O I
10.3233/978-1-61499-133-5-10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a speech-to-text system for semi-spontaneous Estonian speech. The system is trained on about 100 hours of manually transcribed speech and a 300M word text corpus. Compound words are split before building the language model and reconstructed from recognizer output using a hidden event N-gram model. We use a three pass transcription strategy with unsupervised speaker adaptation between individual passes. The system achieves a word error rate of 34.6% on conference speeches and 25.6% on radio talk shows.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [31] The AMI system for the transcription of speech in meetings
    Hain, Thomas
    Burget, Lukas
    Dines, John
    Garau, Giulia
    Karafiat, Martin
    Lincoln, Mike
    Vepa, Jithendra
    Wan, Vincent
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 357 - +
  • [32] The IBM BOLT Speech Transcription System
    Thomas, Samuel
    Saon, George
    Kuo, Hong-Kwang
    Mangu, Lidia
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3150 - 3153
  • [33] Intensity of Estonian Emotional Speech
    Tamuri, Kairi
    HUMAN LANGUAGE TECHNOLOGIES: THE BALTIC PERSPECTIVE, 2012, 247 : 238 - 246
  • [34] Development and characterization of a novel autochthonous semi-spontaneous bladder cancer model by pathological evaluation, single cell sequencing and proteomic profiling
    Kerzeli, I. K.
    Lord, M.
    Stepanek, I
    Chourlia, A.
    Larsson, E.
    Elgendy, R.
    Doroszko, M.
    van Hooren, L.
    Nelander, S.
    Malmstrom, P. U.
    Dragomir, A.
    Segersten, U.
    Mangsbo, S. M.
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2020, 38 (12) : 896 - 896
  • [35] An automatic speech recognition system for spontaneous Punjabi speech corpus
    Kumar Y.
    Singh N.
    International Journal of Speech Technology, 2017, 20 (2) : 297 - 303
  • [36] Input segmentation of spontaneous speech in JANUS: A speech-to-speech translation system
    Lavie, A
    Gates, D
    Coccaro, N
    Levin, L
    DIALOGUE PROCESSING IN SPOKEN LANGUAGE SYSTEMS, 1997, 1236 : 86 - 99
  • [37] MHTTS: Fast Multi-head Text-to-speech For Spontaneous Speech With Imperfect Transcription
    Ma, Dabiao
    Su, Zhiba
    Zhang, Yitong
    Huang, Emily
    Li, Meng
    Lyu, Qiwen
    Ye, Feng
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 239 - 244
  • [38] Development and characterization of a novel semi-spontaneous bladder cancer model by pathological evaluation, single cell sequencing and proteomic profiling of urine and serum
    Kerzeli, Iliana
    Elgendy, Ramy
    Stepanek, Ivan
    Doroszko, Milena
    Chourlia, Aikaterini
    Nelander, Sven
    Malmstrom, Per-Uno
    Segersten, Ulrika
    Dragomir, Anca
    Lord, Martin
    Mangsbo, Sara
    CANCER RESEARCH, 2020, 80 (16)
  • [39] The IBM mandarin broadcast speech transcription system
    Chu, Stephen M.
    Kuo, Hong-kwang
    Liu, Yi Y.
    Qin, Yong
    Shi, Qin
    Zweig, Geoffrey
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 345 - +
  • [40] The 2005 AMI system for the transcription of speech in meetings
    Hain, T
    Burget, L
    Dines, J
    Garau, G
    Karafiat, M
    Lincoln, M
    McCowan, I
    Moore, D
    Wan, V
    Ordelman, R
    Renals, S
    MACHINE LEARNING FOR MULTIMODAL INTERACTION, 2005, 3869 : 450 - 462