A window into lysogeny: revealing temperate phage biology with transcriptomics

被引:30
|
作者
Owen, Sian, V [1 ,2 ]
Canals, Rocio [2 ]
Wenner, Nicolas [2 ]
Hammarlof, Disa L. [2 ,3 ]
Kroger, Carsten [2 ,4 ]
Hinton, Jay C. D. [2 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Univ Liverpool, Inst Integrat Biol, Liverpool, Merseyside, England
[3] KTH, Sci Life Lab, Stockholm, Sweden
[4] Trinity Coll Dublin, Sch Genet & Microbiol, Moyne Inst Prevent Med, Dept Microbiol, Dublin 2, Ireland
来源
MICROBIAL GENOMICS | 2020年 / 6卷 / 02期
基金
英国惠康基金; 瑞士国家科学基金会;
关键词
bacteriophage; transcriptomics; RNA-seq; lysogeny; prophage; GENE-EXPRESSION; BACTERIOPHAGE-LAMBDA; SMALL RNAS; SALMONELLA; PROPHAGES; EVOLUTION; VIRULENCE; RESISTANCE; DIVERSITY; SURVIVAL;
D O I
10.1099/mgen.0.000330
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed. However, it is challenging to identify novel prophage accessory loci from DNA sequence data alone. Here, we use bacterial RNA-seq data to examine the transcriptional landscapes of five Salmonella prophages. We show that transcriptomic data can be used to heuristically enrich for prophage features that are highly expressed within bacterial cells and represent functionally important accessory loci. Using this approach, we identify a novel antisense RNA species in prophage BTP1, STnc6030, which mediates superinfection exclusion of phage BTP1. Bacterial transcriptomic datasets are a powerful tool to explore the molecular biology of temperate phages.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] When to be temperate: on the fitness benefits of lysis vs. lysogeny
    Li, Guanlin
    Cortez, Michael H.
    Dushoff, Jonathan
    Weitz, Joshua S.
    VIRUS EVOLUTION, 2020, 6 (02)
  • [32] RALTIONSHIP OF LYSOGENY AND LYSIS IN PHAGE-S-AUREUS SYSTENS
    WEISS, DL
    NITZKIN, P
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 1971, 56 (05) : 593 - +
  • [33] MULTIPLE EFFECTS OF FIS ON INTEGRATION AND THE CONTROL OF LYSOGENY IN PHAGE LAMBDA
    BALL, CA
    JOHNSON, RC
    JOURNAL OF BACTERIOLOGY, 1991, 173 (13) : 4032 - 4038
  • [34] Revealing developmental networks by comparative transcriptomics
    Hashimshony, Tamar
    Yanai, Itai
    TRANSCRIPTION-AUSTIN, 2010, 1 (03): : 154 - 158
  • [35] PHAGE BIOLOGY Uncorking the phage capsid
    van Ooij, Christiaan
    NATURE REVIEWS MICROBIOLOGY, 2009, 7 (07) : 480 - 481
  • [36] Phage Therapy: Going Temperate?
    Monteiro, Rodrigo
    Pires, Diana Priscila
    Costa, Ana Rita
    Azeredo, Joana
    TRENDS IN MICROBIOLOGY, 2019, 27 (04) : 368 - 378
  • [37] Editorial: Phage Biology and Phage Therapy
    Le, Shuai
    He, Xuesong
    Tong, Yigang
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [38] Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features
    Putzeys, Leena
    Poppeliers, Jorien
    Boon, Maarten
    Lood, Cedric
    Vallino, Marta
    Lavignea, Rob
    MSYSTEMS, 2023, 8 (02)
  • [39] CONVERSION OF SOMATIC ANTIGENS IN SALMONELLA BY PHAGE INFECTION LEADING TO LYSIS OR LYSOGENY
    UETAKE, H
    LURIA, SE
    BURROUS, JW
    VIROLOGY, 1958, 5 (01) : 68 - 91
  • [40] CONDITIONS FOR THE INFECTION OF ESCHERICHIA-COLI WITH LAMBDA PHAGE AND FOR THE ESTABLISHMENT OF LYSOGENY
    FRY, BA
    JOURNAL OF GENERAL MICROBIOLOGY, 1959, 21 (03): : 676 - 684