Trans-Sasakian static spaces

被引:8
|
作者
Al-Dayel, Ibrahim [1 ]
Deshmukh, Sharief [2 ]
Vilcu, Gabriel-Eduard [3 ,4 ,5 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Petr Gas Univ Ploiesti, Dept Cybernet Econ Informat Finance & Accountancy, Bd Bucuresti 39, Ploiesti 100680, Romania
[4] Univ Bucharest, Res Ctr Geometry Topol & Algebra, Str Acad 14, Bucharest 70109, Romania
[5] Univ Politehn Bucuresti, Fac Appl Sci, Dept Math & Informat, Splaiul Independentei 313, Bucharest, Romania
关键词
Trans-Sasakian manifold; Sasakian manifold; Einstein Sasakian manifold; Scalar curvature; Static perfect fluid equation; MANIFOLDS;
D O I
10.1016/j.rinp.2021.105009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Static spaces (with perfect fluids) appeared in a natural way both in physics (cf. Hawking and Ellis, 1975) and mathematics (cf. A. Fischer and J. Marsden, Duke Math. J. 42 (3) (1975), 519-547). These arise as solutions of the perfect static fluid equation and play a key role in general relativity, providing patterns for some celestial objects. In this paper, we investigate compact and simply connected trans-Sasakian spaces having type (alpha, beta), whose defining functions alpha and beta satisfy the static perfect fluid equation. In particular, we derive some conditions that ensure these spaces are isometric to a 3-sphere. First result of this work shows that the function alpha satisfying static perfect fluid equation and the scalar curvature tau satisfying certain inequality are not only necessary, but also sufficient conditions for a 3-dimensional compact and simply connected trans-Sasakian manifold to be isometric to a 3-sphere. In the second result of this paper, we prove that the function beta satisfying the static perfect fluid equation, scalar curvature tau satisfying certain inequality and the Ricci operator satisfying a Coddazi-type equation are also requirements ensuring that a trans-Sasakian space (again compact and also simply connected) is isometric with a 3-sphere.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Lightlike Hypersurfaces in Indefinite Trans-Sasakian Manifolds
    Massamba, Fortune
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 251 - 287
  • [32] THE LOCAL-STRUCTURE OF TRANS-SASAKIAN MANIFOLDS
    MARRERO, JC
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 162 : 77 - 86
  • [33] CR-SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS
    PRASAD, S
    OJHA, RH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (7-8): : 427 - 434
  • [34] CR-SUBMANIFOLDS OF A TRANS-SASAKIAN MANIFOLD
    SHAHID, MH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1991, 22 (12): : 1007 - 1012
  • [35] Some curvature tensors on a trans-Sasakian manifold
    Bagewadi, C. S.
    Venkatesha
    TURKISH JOURNAL OF MATHEMATICS, 2007, 31 (02) : 111 - 121
  • [36] On Invariant Submanifolds of a Nearly Trans-Sasakian Manifold
    A. Turgut Vanli
    R. Sari
    Arabian Journal for Science and Engineering, 2011, 36 : 423 - 429
  • [37] A study on magnetic curves in trans-Sasakian manifolds
    Bozdag, Serife Nur
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (03): : 47 - 60
  • [38] On Invariant Submanifolds of a Nearly Trans-Sasakian Manifold
    Vanli, A. Turgut
    Sari, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (03): : 423 - 429
  • [39] phi-RECURRENT TRANS-SASAKIAN MANIFOLDS
    Nagaraja, H. G.
    MATEMATICKI VESNIK, 2011, 63 (02): : 79 - 86
  • [40] Some curvature properties of trans-Sasakian manifolds
    Akbar A.
    Sarkar A.
    Lobachevskii Journal of Mathematics, 2014, 35 (2) : 56 - 64