Understanding and improving the Wang-Landau algorithm

被引:161
|
作者
Zhou, CG [1 ]
Bhatt, RN [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevE.72.025701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a mathematical analysis of the Wang-Landau algorithm, prove its convergence, and identify sources of errors and strategies for optimization. In particular, we found the histogram increases uniformly with small fluctuations after a stage of initial accumulation, and the statistical error is found to scale as root ln f with the modification factor f. This has implications for strategies for obtaining fast convergence.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Convergence of the Wang-Landau algorithm and statistical error
    Zhou, C
    Bhatt, RN
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XVI, 2006, 103 : 136 - +
  • [12] Application of the Wang-Landau algorithm to the dimerization of glycophorin A
    Gervais, Claire
    Wuest, Thomas
    Landau, D. P.
    Xu, Ying
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (21):
  • [13] Accuracy and convergence of the Wang-Landau sampling algorithm
    Morozov, Alexander N.
    Lin, Sheng Hsien
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [14] Comparison of the microcanonical population annealing algorithm with the Wang-Landau algorithm
    Mozolenko, Vyacheslav
    Fadeeva, Marina
    Shchur, Lev
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [15] The study of quenched bond randomness by Wang-Landau algorithm
    Yasar, Faith
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (07): : 1107 - 1117
  • [16] Wang-Landau algorithm: A theoretical analysis of the saturation of the error
    Belardinelli, R. E.
    Pereyra, V. D.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (18):
  • [17] Wang-Landau algorithm as stochastic optimization and its acceleration
    Dai, Chenguang
    Liu, Jun S.
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [18] Applying the Wang-Landau algorithm to lattice gauge theory
    Bringoltz, Barak
    Sharpe, Stephen R.
    PHYSICAL REVIEW D, 2008, 78 (07):
  • [19] Optimal modification factor and convergence of the Wang-Landau algorithm
    Zhou, Chenggang
    Su, Jia
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [20] Efficiency of the Wang-Landau Algorithm: A Simple Test Case
    Fort, Gersende
    Jourdain, Benjamin
    Kuhn, Estelle
    Lelievre, Tony
    Stoltz, Gabriel
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2014, Oxford University Press (02) : 275 - 311