Orlicz-Sobolev extensions and measure density condition

被引:7
|
作者
Heikkinen, Toni [1 ]
Tuominen, Heli [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Orlicz-Sobolev space; Extension domain; Measure density; Metric measure space; FINITE DISTORTION; REGULAR SUBSETS; SPACES; MAPPINGS; EXTENDABILITY; OPERATORS;
D O I
10.1016/j.jmaa.2010.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the extension properties of Orlicz-Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E subset of R satisfying a measure density condition admits a bounded linear extension operator from the trace space W-1,W-psi (R-n)vertical bar(E) to W-1,W-psi (R-n). Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension operator. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:508 / 524
页数:17
相关论文
共 50 条
  • [41] A Harnack inequality in Orlicz-Sobolev spaces
    Arriagad, Waldo
    Huentutripay, Jorge
    STUDIA MATHEMATICA, 2018, 243 (02) : 117 - 137
  • [42] Orlicz-Sobolev boundary trace embeddings
    Cianchi, Andrea
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 431 - 449
  • [43] PRIME ENDS AND ORLICZ-SOBOLEV CLASSES
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (05) : 765 - 788
  • [44] Removable Sets for Orlicz-Sobolev Spaces
    Nijjwal Karak
    Potential Analysis, 2015, 43 : 675 - 694
  • [45] On the Equicontinuity of Homeomorphisms of Orlicz and Orlicz-Sobolev Classes in the Closure of a Domain
    Sevost'yanov, E. A.
    Petrov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 69 (11) : 1821 - 1834
  • [46] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [47] HARDY INEQUALITIES IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Salort, Ariel M.
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 183 - 195
  • [48] NEMITSKY OPERATORS BETWEEN ORLICZ-SOBOLEV SPACES
    HARDY, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 30 (02) : 251 - 269
  • [49] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [50] Magnetic fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    STUDIA MATHEMATICA, 2021, 259 (01) : 1 - 24