Rigid dualizing complexes over quantum homogeneous spaces

被引:10
|
作者
Liu, L. -Y. [1 ]
Wu, Q. -S. [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Quantum homogeneous space; Hopf algebra; Rigid dualizing complex; AS-Gorenstein; Nakayama automorphism; HOPF-ALGEBRAS; COIDEAL SUBALGEBRAS; CROSSED-PRODUCTS; FREENESS; RINGS;
D O I
10.1016/j.jalgebra.2011.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quantum homogeneous space of a Hopf algebra is a right coideal subalgebra over which the Hopf algebra is faithfully flat. It is shown that the Auslander-Gorenstein property of a Hopf algebra is inherited by its quantum homogeneous spaces. If the quantum homogeneous space B of a pointed Hopf algebra H is AS-Gorenstein of dimension d, then B has a rigid dualizing complex vB[d]. The Nakayama automorphism v is given by v = ad(g) o S-2 o Xi[tau], where ad(g) is the inner automorphism associated to some group-like element g is an element of H and Xi[tau] is the algebra map determined by the left integral of B. The quantum homogeneous spaces of U-q(sl(2)) are classified and all of them are proved to be Auslander-regular, AS-regular and Cohen-Macaulay. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 141
页数:21
相关论文
共 50 条
  • [21] EXISTENCE OF DUALIZING COMPLEXES
    OGOMA, T
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1984, 24 (01): : 27 - 48
  • [22] From quantum tori to quantum homogeneous spaces
    Kamimura, S
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 67 - 74
  • [23] Nondivergence on homogeneous spaces and rigid totally geodesic submanifolds
    Zhang, Han
    Zhang, Runlin
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 264 (01) : 149 - 176
  • [24] DUALIZING COMPLEXES AND SYSTEMS OF PARAMETERS
    SCHENZEL, P
    JOURNAL OF ALGEBRA, 1979, 58 (02) : 495 - 501
  • [25] Equivariant Comparison of Quantum Homogeneous Spaces
    Makoto Yamashita
    Communications in Mathematical Physics, 2013, 317 : 593 - 614
  • [26] Equivariant Comparison of Quantum Homogeneous Spaces
    Yamashita, Makoto
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (03) : 593 - 614
  • [27] Quantum cohomology of minuscule homogeneous spaces
    Chaput, P. E.
    Manivel, L.
    Perrin, N.
    TRANSFORMATION GROUPS, 2008, 13 (01) : 47 - 89
  • [28] Quantum Cohomology of Minuscule Homogeneous Spaces
    P. E. Chaput
    L. Manivel
    N. Perrin
    Transformation Groups, 2008, 13 : 47 - 89
  • [29] On a Certain Approach to Quantum Homogeneous Spaces
    Kasprzak, P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 313 (01) : 237 - 255
  • [30] Differential calculus on quantum homogeneous spaces
    Heckenberger, I
    Kolb, S
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (03) : 255 - 264