Cost Sensitive Ranking Support Vector Machine for Multi-label Data Learning

被引:14
|
作者
Cao, Peng [1 ]
Liu, Xiaoli [1 ]
Zhao, Dazhe [1 ]
Zaiane, Osmar [2 ]
机构
[1] Northeastern Univ, Key Lab Med Image Comp, Minist Educ, Comp Sci & Engn, Boston, Peoples R China
[2] Univ Alberta, Edmonton, AB, Canada
基金
中国国家自然科学基金;
关键词
Multi-label learning; Imbalanced data; Classification; Rank SVM; CLASSIFICATION;
D O I
10.1007/978-3-319-52941-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label data classification has become an important and active research topic, where the classification algorithm is required to deal with prediction of sets of label indicators for instances simultaneously. Label powerset (LP) method reduces the multi-label classification problem to a single-label multi-class classification problem by treating each distinct combination of labels. However, the predictive performance of LP is challenged with imbalanced distribution among the labelsets, deteriorating the performance of traditional classifiers. In this paper, we study the problem of multi-label imbalanced data classification and propose a novel solution, called CSRankSVM (Cost sensitive Ranking Support Vector Machine), which assigns a different mis-classification cost for each labelset to effectively tackle the problem of imbalance for Multi-label data. Empirical studies on popular benchmark datasets with various imbalance ratios of labelsets demonstrate that the proposed CSRankSVM approach can effectively boost classification performances in multi-label datasets.
引用
收藏
页码:244 / 255
页数:12
相关论文
共 50 条
  • [41] An Effective Semi-Supervised Multi-Label Least Squares Twin Support Vector Machine
    Ai, Qing
    Kang, Yude
    Wang, Anna
    Li, Xiangna
    Li, Fei
    IEEE ACCESS, 2020, 8 : 213460 - 213472
  • [42] Partial Calibrated Multi-label Ranking
    Moral-Garcia, Serafin
    Destercke, Sebastien
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 287 - 294
  • [43] Multi-label Learning Based on Kernel Extreme Learning Machine
    Luo, Fangfang
    Guo, Wenzhong
    Huang, Fangwan
    Chen, Guolong
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE), 2017, 190 : 133 - 141
  • [44] Multi-label learning with kernel extreme learning machine autoencoder
    Cheng, Yusheng
    Zhao, Dawei
    Wang, Yibin
    Pei, Gensheng
    KNOWLEDGE-BASED SYSTEMS, 2019, 178 : 1 - 10
  • [45] Active Learning Algorithms for Multi-label Data
    Cherman, Everton Alvares
    Tsoumakas, Grigorios
    Monard, Maria-Carolina
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2016, 2016, 475 : 267 - 279
  • [46] Multi-label learning via minimax probability machine
    Rastogi, Reshma
    Jain, Sambhav
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 145 : 1 - 17
  • [47] Predicting Label Distribution from Multi-label Ranking
    Lu, Yunan
    Jia, Xiuyi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [48] Cost-Sensitive Support Vector Machine for Semi-Supervised Learning
    Qi, Zhiquan
    Tian, Yingjie
    Shi, Yong
    Yu, Xiaodan
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 1684 - 1689
  • [49] Multi-label Extreme Learning Machine Based on Label Matrix Factorization
    Li Sihao
    Chen Fucai
    Huang Ruiyang
    Xie Yixi
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 665 - 670
  • [50] A Multi Label Learning Method Using Affinity Propagation and Support Vector Machine
    Li, Jing-Jing
    Alzami, Farrikh
    Gong, Yue-Jiao
    Yu, Zhiwen
    IEEE ACCESS, 2017, 5 : 2955 - 2966