Broken Luttinger theorem in the two-dimensional Fermi-Hubbard model

被引:6
|
作者
Osborne, Ian [1 ]
Paiva, Thereza [2 ]
Trivedi, Nandini [1 ]
机构
[1] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
[2] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68-528, BR-21941972 Rio De Janeiro, RJ, Brazil
关键词
QUASI-PARTICLE DISPERSION; MONTE-CARLO SIMULATIONS; ANALYTIC CONTINUATION; NORMAL-STATE; SURFACE;
D O I
10.1103/PhysRevB.104.235122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the fundamental questions about high-temperature cuprate superconductors is the size of the Fermi surface underlying the superconducting state. By analyzing the single-particle spectral function for the Fermi Hubbard model as a function of repulsion U and chemical potential mu, we find that the Fermi surface in the normal state undergoes a transition from a large Fermi surface matching the Luttinger volume as expected in a Fermi liquid, to a Fermi surface that encloses fewer electrons that we dub the "Luttinger breaking" phase, as the Mott insulator is approached. This transition into a non-Fermi-liquid phase that violates the Luttinger count occurs at a critical density in the absence of any other broken symmetry. We obtain the Fermi-surface contour from the spectral weight A(k)(w = 0) and from an analysis of the singularities of the Green's function Re G(k)(E = 0), calculated using determinantal quantum Monte Carlo and analytic continuation methods. We discuss our numerical results in connection with experiments on Hall measurements, scanning tunneling spectroscopy, and angle-resolved photoemission spectroscopy.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Two-dimensional fermi gas at half filling is a Luttinger liquid
    Batkilin, E.
    Journal De Physique, I, 1995, 5 (11):
  • [42] Kohn-Luttinger pseudopairing in a two-dimensional Fermi liquid
    Galitski, VM
    Das Sarma, S
    PHYSICAL REVIEW B, 2003, 67 (14):
  • [43] Trotter error with commutator scaling for the Fermi-Hubbard model
    Schubert, Ansgar
    Mendl, Christian B.
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [44] Universal thermodynamics of an SU(N) Fermi-Hubbard model
    Ibarra-Garcia-Padilla, Eduardo
    Dasgupta, Sohail
    Wei, Hao-Tian
    Taie, Shintaro
    Takahashi, Yoshiro
    Scalettar, Richard T.
    Hazzard, Kaden R. A.
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [45] Principal component analysis of the magnetic transition in the three-dimensional Fermi-Hubbard model
    Khatami, Ehsan
    XXX IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS, 2019, 1290
  • [46] Topological stripe state in an extended Fermi-Hubbard model
    Julia-Farre, Sergi
    Cardarelli, Lorenzo
    Lewenstein, Maciej
    Miller, Markus
    Dauphin, Alexandre
    PHYSICAL REVIEW B, 2024, 109 (07)
  • [47] Hopping Modulation in a One-Dimensional Fermi-Hubbard Hamiltonian
    Massel, Francesco
    Leskinen, Mikko J.
    Torma, Paivi
    PHYSICAL REVIEW LETTERS, 2009, 103 (06)
  • [48] Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model
    Kaczmarczyk, J.
    Weimer, H.
    Lemeshko, M.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [49] Observation of Elastic Doublon Decay in the Fermi-Hubbard Model
    Strohmaier, Niels
    Greif, Daniel
    Jordens, Robert
    Tarruell, Leticia
    Moritz, Henning
    Esslinger, Tilman
    Sensarma, Rajdeep
    Pekker, David
    Altman, Ehud
    Demler, Eugene
    PHYSICAL REVIEW LETTERS, 2010, 104 (08)
  • [50] Dynamics of two-site Fermi-Hubbard and Bose-Hubbard systems
    Ziegler, K.
    PHYSICAL REVIEW A, 2010, 81 (03):