LINEAR COMPUTATION CODING

被引:6
|
作者
Mueller, Ralf R. [1 ]
Gaede, Bernhard [1 ]
Bereyhi, Ali [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Digital Commun, Erlangen, Germany
关键词
approximate computing; fixed-point arithmetic; neural networks; quantization; MULTIPLICATION;
D O I
10.1109/ICASSP39728.2021.9414317
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We introduce the new concept of computation coding. For linear functions, we present an algorithm to reduce the computational cost of multiplying an arbitrary given matrix with an unknown vector. It decomposes the given matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical implementation of deep neural networks, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.
引用
收藏
页码:5065 / 5069
页数:5
相关论文
共 50 条
  • [41] Quantum computation with linear optics
    Adami, C
    Cerf, NJ
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 391 - 401
  • [42] COMPUTATION OF FIELD OF LINEAR MOTOR
    TOZONI, OV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (07): : 662 - 666
  • [43] THE COMPUTATION OF OPTIMUM LINEAR TAXATION
    HEADY, CJ
    MITRA, PK
    REVIEW OF ECONOMIC STUDIES, 1980, 47 (03): : 567 - 585
  • [44] The Capacity of Linear Computation Broadcast
    Sun, Hua
    Jafar, Syed A.
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [45] LINEAR LOGIC AND LAZY COMPUTATION
    GIRARD, JY
    LAFONT, Y
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 250 : 52 - 66
  • [46] Coding for Lossy Function Computation: Analyzing Sequential Function Computation with Distortion Accumulation
    Yang, Yaoqing
    Grover, Pulkit
    Kar, Soummya
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 140 - 144
  • [47] Interactive function computation via polar coding
    Gulcu, T. C.
    Barg, A. M.
    PROBLEMS OF INFORMATION TRANSMISSION, 2016, 52 (01) : 66 - 91
  • [48] Characterization and computation of optimal distributions for channel coding
    Huang, JY
    Meyn, SP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2336 - 2351
  • [49] Communication-Computation Efficient Gradient Coding
    Ye, Min
    Abbe, Emmanuel
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [50] Graded Computation Tree Logic with Binary Coding
    Bianco, Alessandro
    Mogavero, Fabio
    Murano, Aniello
    COMPUTER SCIENCE LOGIC, 2010, 6247 : 125 - 139