Unipotent group;
Finite field;
Geometric character theory;
SHEAVES;
D O I:
10.1007/s00029-010-0036-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a connected unipotent group over a finite field F(q). In this article, we propose a definition of L-packets of complex irreducible representations of the finite group G(F(q)) and give an explicit description of L-packets in terms of the so-called admissible pairs for G. We then apply our results to show that if the centralizer of every geometric point of G is connected, then the dimension of every complex irreducible representation of G(F(q)) is a power of q, confirming a conjecture of Drinfeld. This paper is the first in a series of three papers exploring the relationship between representations of a group of the form G(F(q)) (where G is a unipotent algebraic group over F(q)), the geometry of G, and the theory of character sheaves.
机构:
Univ Picardie Jules Verne, CNRS UMR 7352, Lab Amienois Math Fondamentale & Appl, F-80039 Amiens, FranceUniv Picardie Jules Verne, CNRS UMR 7352, Lab Amienois Math Fondamentale & Appl, F-80039 Amiens, France
Digne, Francois
Lehrer, Gustav
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, AustraliaUniv Picardie Jules Verne, CNRS UMR 7352, Lab Amienois Math Fondamentale & Appl, F-80039 Amiens, France
Lehrer, Gustav
Michel, Jean
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 07, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, FranceUniv Picardie Jules Verne, CNRS UMR 7352, Lab Amienois Math Fondamentale & Appl, F-80039 Amiens, France