Surface acidity of tin dioxide nanomaterials revealed with 31P solid-state NMR spectroscopy and DFT calculations

被引:7
|
作者
Zhang, Wenjing [1 ]
Lin, Zhiye [1 ]
Li, Hanxiao [2 ]
Wang, Fang [1 ]
Wen, Yujie [1 ]
Xu, Meng [1 ]
Wang, Yang [1 ]
Ke, Xiaokang [1 ]
Xia, Xifeng [3 ]
Chen, Junchao [1 ]
Peng, Luming [1 ]
机构
[1] Nanjing Univ, Key Lab Mesoscop Chem MOE, Collaborat Innovat Ctr Chem Life Sci, Sch Chem & Chem Engn, 163 Xianlin Rd, Nanjing 210023, Peoples R China
[2] Qingdao Univ Sci & Technol, Chinesisch Deutsch Tech Fak, 99 Songling Rd, Qingdao 266061, Peoples R China
[3] Nanjing Univ Sci & Technol, Anal & Testing Ctr, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
SNO2; NANOSHEETS; CHEMICAL-SHIFTS; METAL-OXIDES; OXIDATION; CATALYSTS; PROGRESS; SUGARS; SITES;
D O I
10.1039/d1ra02782d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin dioxide (SnO2) nanomaterials are important acid catalysts. It is therefore crucial to obtain details about the surface acidic properties in order to develop structure-property relationships. Herein, we apply P-31 solid-state NMR spectroscopy combined with a trimethylphosphine (TMP) probe molecule, to study the facet-dependent acidity of SnO2 nanosheets and nanoshuttles. With the help of density functional theory calculations, we show that the tin cations exposed on the surfaces are Lewis acid sites and their acid strengths rely on surface geometries. As a result, the (001), (101), (110), and (100) facets can be differentiated by the P-31 NMR shifts of adsorbed TMP molecules, and their fractions in different nanomaterials can be extracted according to deconvoluted P-31 NMR resonances. The results provide new insights on nanosized oxide acid catalysts.
引用
收藏
页码:25004 / 25009
页数:6
相关论文
共 50 条
  • [11] Acidity Characterization of Solid Acid Catalysts by Solid-State 31P NMR of Adsorbed Phosphorus-Containing Probe Molecules
    Zheng, Anmin
    Deng, Feng
    Liu, Shang-Bin
    ANNUAL REPORTS ON NMR SPECTROSCOPY, VOL 81, 2014, 81 : 47 - 108
  • [12] A kinetic study of mechanochemical halogen bond formation by in situ 31P solid-state NMR spectroscopy
    Xu, Yijue
    Champion, Lysiane
    Gabidullin, Bulat
    Bryce, David L.
    CHEMICAL COMMUNICATIONS, 2017, 53 (71) : 9930 - 9933
  • [13] Hydrophobic and electrostatic cardiatoxin-phospholipid interactions as seen by solid-state 31P NMR spectroscopy
    Picard, F
    Pézolet, M
    Bougis, PE
    Auger, M
    CANADIAN JOURNAL OF ANALYTICAL SCIENCES AND SPECTROSCOPY, 2000, 45 (03): : 72 - 83
  • [14] Solid-State 65Cu and 31P NMR Spectroscopy of Bis(triphenylphosphine) Copper Species
    Lucier, Bryan E. G.
    Tang, Joel A.
    Schurko, Robert W.
    Bowmaker, Graham A.
    Healy, Peter C.
    Hanna, John V.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (17): : 7949 - 7962
  • [15] Evidence of Nanometric-Sized Phosphate Clusters in Bioactive Glasses As Revealed by Solid-State 31P NMR
    Fayon, Franck
    Duee, Cedric
    Poumeyrol, Thomas
    Allix, Mathieu
    Massiot, Dominique
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (05): : 2283 - 2288
  • [16] Solution 31P and 59Co and solid-state 31P CP/MAS NMR studies of triphenylphosphinecobaloximes
    Asaro, F
    Gobetto, R
    Liguori, L
    Pellizer, G
    CHEMICAL PHYSICS LETTERS, 1999, 300 (3-4) : 414 - 420
  • [17] A comprehensive collection of solid-state 31P NMR spectra of aluminophosphate zeolites
    Brouwer, Darren H.
    White, Alexa L.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 337
  • [18] Direct quantification of oxygen vacancy on the TiO2 surface by 31P solid-state NMR
    Wu, Yanan
    Wang, Yizhen
    Huang, Daofeng
    Ding, Hongxin
    Ren, Yuanhang
    Zhang, Ying
    Yue, Bin
    He, Heyong
    Ye, Lin
    CHEM CATALYSIS, 2023, 3 (04):
  • [19] DFT Calculations of 31P NMR Chemical Shifts in Palladium Complexes
    Kondrashova, Svetlana A.
    Polyancev, Fedor M.
    Latypov, Shamil K.
    MOLECULES, 2022, 27 (09):
  • [20] Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules: An update
    Yi, Xianfeng
    Zheng, Anmin
    Liu, Shang-Bin
    ANNUAL REPORTS ON NMR SPECTROSCOPY, VOL 101, 2020, 101 : 65 - 149