A mission concept for a GEO based quantum key distribution services using entangled photons

被引:1
|
作者
Wille, E. [1 ]
Hauschildt, H. [1 ]
Heese, C. [1 ]
Huesing, J. [1 ]
Gutierrez, B. Garcia [1 ]
Sodnik, Z. [1 ]
Elia, C. [1 ]
机构
[1] European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands
来源
关键词
Times Roman; image area; acronyms; references;
D O I
10.1117/12.2545706
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a mission proposal to provide a space based quantum key distribution service. Using entangled photon pairs distributed to two ground stations with a simultaneous double downlink establishes a secret key directly at the user locations. The satellite and the payload do not generate or process any secret key information and the security design, certification and operation of the key management can be restricted to the user locations on ground. Positioning the satellite in GEO enables covering Europe and intercontinental connections, allows flexible service planning to cope with weather constraints and removes the need for coarse tracking telescopes in space and on ground while allowing long integration times. The large link distance and the combined losses of two down links require large optical terminals in space and on ground to obtain a usable secure key generation rate. We will present results from an ESA internal Phase 0 study concentrating on the payload design and performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Entangled eavesdropping in quantum key distribution
    Brandt, Howard E.
    JOURNAL OF MODERN OPTICS, 2006, 53 (16-17) : 2251 - 2257
  • [22] Quantum key distribution implemented with d-level time-bin entangled photons
    Yu, Hao
    Sciara, Stefania
    Chemnitz, Mario
    Montaut, Nicola
    Crockett, Benjamin
    Fischer, Bennet
    Helsten, Robin
    Wetzel, Benjamin
    Goebel, Thorsten A.
    Kraemer, Ria G.
    Little, Brent E.
    Chu, Sai T.
    Nolte, Stefan
    Wang, Zhiming
    Azana, Jose
    Munro, William J.
    Moss, David J.
    Morandotti, Roberto
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [23] Practical quantum key distribution using polarization entangled states
    Bovino, FA
    Varisco, P
    Martinoli, A
    De Nicolo, P
    Bruzzo, S
    Colla, AM
    Castagnoli, G
    Di Giuseppe, G
    Sergienko, AV
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 (01) : 141 - 146
  • [24] Quantum key distribution using different-frequency photons
    Shi, BS
    Jiang, YK
    Guo, GC
    APPLIED PHYSICS B-LASERS AND OPTICS, 2000, 70 (03): : 415 - 417
  • [25] Quantum key distribution using polarization and frequency hyperentangled photons
    Wang, Chuan
    Xiao, Li
    Wang, Wan-ying
    Zhang, Guang-yu
    Long, Gui Lu
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (11) : 2072 - 2076
  • [26] Quantum key distribution using different-frequency photons
    B.-S. Shi
    Y.-K. Jiang
    G.-C. Guo
    Applied Physics B, 2000, 70 : 415 - 417
  • [27] Entanglement Based Quantum Key Distribution Using a Bright Sagnac Entangled Photon Source
    Erven, C.
    Hamel, D.
    Resch, K.
    Laflamme, R.
    Weihs, G.
    QUANTUM COMMUNICATION AND QUANTUM NETWORKING, 2010, 36 : 108 - 116
  • [28] Quantum target detection using entangled photons
    Devi, A. R. Usha
    Rajagopal, A. K.
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [29] Measurement of quantum efficiency using entangled photons
    Czitrovszky, A
    Sergienko, A
    Jani, P
    Nagy, A
    LASER PHYSICS, 2000, 10 (01) : 86 - 89
  • [30] Performance Limits For Single-Photons, Correlated Photons, and Entangled Photons For Quantum Key Distribution over Fiber Optics Network Topologies.
    Donkor, Eric
    Althowibi, Fahad
    Williams, Ryan
    QUANTUM INFORMATION AND COMPUTATION XIII, 2015, 9500