The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions

被引:9
|
作者
Logunov, A. [1 ,2 ]
Malinnikova, E. [3 ,4 ]
Nadirashvili, N. [5 ]
Nazarov, F. [6 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Geneva, Sect Math, Geneva, Switzerland
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] NTNU, Dept Math Sci, Trondheim, Norway
[5] CNRS, Inst Math Marseille, Marseille, France
[6] Kent State Univ, Dept Math, Kent, OH 44242 USA
关键词
Laplace eigenfunction; Nodal set; Lipschitz domain; UNIQUE CONTINUATION; DOMAINS;
D O I
10.1007/s00039-021-00581-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded domain in R-n with C-1 boundary and let u(lambda) be a Dirichlet Laplace eigenfunction in Omega with eigenvalue lambda. We show that the (n - 1)-dimensional Hausdorff measure of the zero set of u(lambda) does not exceed C(Omega)root lambda. This result is new even for the case of domains with C-infinity-smooth boundary.
引用
收藏
页码:1219 / 1244
页数:26
相关论文
共 50 条
  • [21] Nodal sets of Steklov eigenfunctions
    Katarína Bellová
    Fang-Hua Lin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2239 - 2268
  • [22] EIGENFUNCTIONS WITH PRESCRIBED NODAL SETS
    Enciso, Alberto
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 197 - 211
  • [23] On the nodal sets of toral eigenfunctions
    Jean Bourgain
    Zeév Rudnick
    Inventiones mathematicae, 2011, 185 : 199 - 237
  • [24] Polynomial upper bound on interior Steklov nodal sets
    Georgiev, Bogdan
    Roy-Fortin, Guillaume
    JOURNAL OF SPECTRAL THEORY, 2019, 9 (03) : 897 - 919
  • [25] On the nodal lines of random and deterministic Laplace eigenfunctions
    Wigman, Igor
    SPECTRAL GEOMETRY, 2012, 84 : 285 - 297
  • [26] Measure upper bounds for nodal sets of eigenfunctions of the bi-harmonic operator
    Tian, Long
    Yang, Xiaoping
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1936 - 1973
  • [28] Lower Bounds for Nodal Sets of Eigenfunctions
    Tobias H. Colding
    William P. Minicozzi
    Communications in Mathematical Physics, 2011, 306 : 777 - 784
  • [29] Lower Bounds for Nodal Sets of Eigenfunctions
    Colding, Tobias H.
    Minicozzi, William P., II
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (03) : 777 - 784
  • [30] NODAL SETS OF EIGENFUNCTIONS ON RIEMANN SURFACES
    DONG, RT
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1992, 36 (02) : 493 - 506