Using a Trial Sample on Stainless Steel 316L in a Direct Laser Deposition Process

被引:6
|
作者
Vildanov, Artur [1 ]
Babkin, Konstantin [1 ,2 ]
Mendagaliyev, Ruslan [2 ]
Arkhipov, Andrey [2 ]
Turichin, Gleb [2 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Inst Met Mech Engn & Transport, St Petersburg 195251, Russia
[2] St Petersburg State Marine Tech Univ, Inst Laser & Welding Technol, St Petersburg 190121, Russia
关键词
direct laser deposition (DLD); direct energy deposition using laser beam (DED-LB); direct metal deposition (DMD); direct energy deposition (DED); additive manufacturing (AM); stainless steel 316L; thermocycles; macrodefects; non-fusion; MICROSTRUCTURE; CORROSION;
D O I
10.3390/met11101550
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Direct laser deposition technology is used for the manufacture of large-size products with complex geometries. As a rule, trial samples with small dimensions are made to determine the deposition parameters. In order for the resulting products to have the required performance characteristics, it is necessary to minimize the number of internal macrodefects. Non-fusion between the tracks are defects that depend on the technological mode (power, speed, track width, etc.). In this work, studies have been carried out to determine the power level at which non-fusion is formed, dwell time between the tracks on the model samples. This paper considers the issue of transferring the technological parameters of direct laser deposition from model samples to a large-sized part, and describes the procedure for making model samples.</p>
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [32] Effect of Process Parameters on Defect in Selective Laser Melting of 316L Stainless Steel
    Wang Lei
    Guo Kai
    Cong Jiaqi
    Bai Huiyi
    Kang Xueliang
    Ji Yunping
    Li Yiming
    Ren Huiping
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (05)
  • [33] Integrated approach to stainless steel 316L parts repair for pitting corrosion using laser metal deposition
    Smail, Bilel Si
    Cailloux, Thomas
    Quinsat, Yann
    Pacquentin, Wilfried
    Narasimalu, Srikanth
    Maskrot, Hicham
    Balbaud-Celerier, Fanny
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 95 : 1 - 13
  • [34] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Venettacci, Simone
    Giannini, Oliviero
    Guarino, Stefano
    Horn, Matthias
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (03) : 437 - 458
  • [35] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Gennaro Salvatore Ponticelli
    Simone Venettacci
    Oliviero Giannini
    Stefano Guarino
    Matthias Horn
    Progress in Additive Manufacturing, 2023, 8 : 437 - 458
  • [36] Hardening of 316L stainless steel by laser surface alloying
    Laroudie, F.
    Tassin, C.
    Pons, M.
    1995, Chapman & Hall Ltd, London, United Kingdom (30)
  • [37] PARAMETRIC OPTIMISATION OF LASER WELDING OF STAINLESS STEEL 316L
    Butt, Adnan Qayyum
    Tayyaba, Qanita
    Raza, Muhammad Ali
    Rehman, Abdul
    Khan, Tayyab Ali
    Shahzad, Muhmmad
    ACTA POLYTECHNICA, 2024, 64 (02) : 77 - 86
  • [38] The passivity of selective laser melted 316L stainless steel
    Kong, Decheng
    Dong, Chaofang
    Ni, Xiaoqing
    Zhang, Liang
    Luo, Hong
    Li, Ruixue
    Wang, Li
    Man, Cheng
    Li, Xiaogang
    APPLIED SURFACE SCIENCE, 2020, 504
  • [39] Numerical and experimental investigation on laser metal deposition as repair technology for 316L stainless steel
    Zhan, M. J.
    Sun, G. F.
    Wang, Z. D.
    Shen, X. T.
    Yan, Y.
    Ni, Z. H.
    OPTICS AND LASER TECHNOLOGY, 2019, 118 : 84 - 92
  • [40] Directed Energy Deposition of AISI 316L Stainless Steel Powder: Effect of Process Parameters
    Aversa, Alberta
    Marchese, Giulio
    Bassini, Emilio
    METALS, 2021, 11 (06)