Sparse Activation Maps for Interpreting 3D Object Detection

被引:6
|
作者
Chen, Qiuxiao [1 ]
Li, Pengfei [2 ]
Xu, Meng [1 ]
Qi, Xiaojun [1 ]
机构
[1] Utah State Univ, Logan, UT 84322 USA
[2] Univ Calif Riverside, Riverside, CA 92521 USA
关键词
D O I
10.1109/CVPRW53098.2021.00017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a technique to generate "visual explanations" for interpretability of volumetric-based 3D object detection networks. Specifically, we use the average pooling of weights to produce a Sparse Activation Map (SAM) which highlights the important regions of the 3D point cloud data. The SAMs is applicable to any volumetric-based models (model agnostic) to provide intuitive intermediate results at different layers to understand the complex network structures. The SAMs at the 3D feature map layer and the 2D feature map layer help to understand the effectiveness of neurons to capture the object information. The SAMs at the classification layer for each object class helps to understand the true positives and false positives of each network. The experimental results on the KITTI dataset demonstrate the visual observations of the SAM match the detection results of three volumetric-based models.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 50 条
  • [41] Contextual Attribution Maps-Guided Transferable Adversarial Attack for 3D Object Detection
    Cai, Mumuxin
    Wang, Xupeng
    Sohel, Ferdous
    Lei, Hang
    REMOTE SENSING, 2024, 16 (23)
  • [42] Towards 3D object maps for autonomous household robots
    Rusu, Radu Bogdan
    Blodow, Nico
    Marton, Zoltan
    Soos, Alina
    Beetz, Michael
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 3197 - 3204
  • [43] Synchronizing of moving object with novel 3D maps imaging
    Dymkova, S. S.
    Dymkov, A. D.
    2020 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2020,
  • [44] Multimodal Object Query Initialization for 3D Object Detection
    van Geerenstein, Mathijs R.
    Ruppel, Felicia
    Dietmayers, Klaus
    Gavrila, Dariu M.
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 12484 - 12491
  • [45] 3D Object Proposals for Accurate Object Class Detection
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhu, Yukun
    Berneshawi, Andrew
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [46] Focal Loss in 3D Object Detection
    Yun, Peng
    Tai, Lei
    Wang, Yuan
    Liu, Chengju
    Liu, Ming
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 1263 - 1270
  • [47] Mobile 3D Object Detection in Clutter
    Meger, David
    Little, James J.
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011,
  • [48] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 1959 - 1966
  • [49] Towards Stable 3D Object Detection
    Wang, Jiabao
    Meng, Qiang
    Liu, Guochao
    Yang, Liujiang
    Wang, Ke
    Cheng, Ming-Ming
    Hou, Qibin
    COMPUTER VISION - ECCV 2024, PT L, 2025, 15108 : 197 - 213
  • [50] Rotationally Equivariant 3D Object Detection
    Yu, Hong-Xing
    Wu, Jiajun
    Yi, Li
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1446 - 1454