Efficiency Drifts in Euronext Stock Indexes Returns

被引:0
|
作者
Gomes, Luis M. P. [1 ]
Soares, Vasco J. S. [2 ]
Gama, Silvio M. A. [3 ,4 ]
Matos, Jose A. O. [5 ,6 ]
机构
[1] Polytech Inst Porto, CEOS PP Ctr Org & Social Studies P Porto, Porto, Portugal
[2] Univ Portucalense, ISVOUGA Inst Super Entre Douro & Vouga, CEPESE Ctr Estudos Populacao Econ & Soc, Porto, Portugal
[3] Univ Porto, Fac Sci, CMUP, Porto, Portugal
[4] Univ Porto, Fac Sci, Dept Math, Porto, Portugal
[5] Univ Porto, Fac Econ, CMUP, Porto, Portugal
[6] Univ Porto, Fac Econ, Math & Informat Syst Grp, Porto, Portugal
来源
INTERNATIONAL JOURNAL OF BUSINESS | 2022年 / 27卷 / 02期
关键词
long-term memory; rescaled-range analysis; detrended fluctuation analysis; fractional differencing analysis; efficient market hypothesis; LONG-TERM-MEMORY; HURST EXPONENT; DEPENDENCE; MARKETS; HETEROSKEDASTICITY; TIME;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper intends to assess and test long-term memory in the Euronext stock indexes returns in the search for fractal dynamics that refute the random walk hypothesis. The Hurst exponents estimated through Rescaled-Range and Detrended Fluctuation Analysis evidence long memory in the form of persistence for all markets, with the exception of CAC 40 by the DFA. However, the Rescaled-Range Tests neither reject the absence of long dependency nor reject the existence of short dependency. On the contrary, the Fractional Differencing Test supports the presence of persistence in the PSI 20, ISE 20 and OBX indexes. This suggests that these markets are more prone to predictability, but also trends that may be unexpectedly disrupted by discontinuities, exhibiting dynamics incompatible with random walk behavior and providing evidence against the weak form of efficiency and validity of the asset pricing models.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Extreme stock returns
    D Glickman
    AG DiRienzo
    R Ochman
    Journal of Asset Management, 2001, 2 (2) : 107 - 127
  • [42] Affect and stock returns
    Breitmayer, Bastian
    Pelster, Matthias
    JOURNAL OF BEHAVIORAL AND EXPERIMENTAL FINANCE, 2018, 18 : 76 - 84
  • [43] Nonstationarities in stock returns
    Starica, C
    Granger, C
    REVIEW OF ECONOMICS AND STATISTICS, 2005, 87 (03) : 503 - 522
  • [44] Models for stock returns
    Nadarajah, Saralees
    QUANTITATIVE FINANCE, 2012, 12 (03) : 411 - 424
  • [45] HETEROSKEDASTICITY IN STOCK RETURNS
    SCHWERT, GW
    SEGUIN, PJ
    JOURNAL OF FINANCE, 1990, 45 (04): : 1129 - 1155
  • [46] Resiliency and Stock Returns
    Hua, Jian
    Peng, Lin
    Schwartz, Robert A.
    Alan, Nazli Sila
    REVIEW OF FINANCIAL STUDIES, 2020, 33 (02): : 747 - 782
  • [47] Predicting stock returns
    Avramov, Doron
    Chordia, Tarun
    JOURNAL OF FINANCIAL ECONOMICS, 2006, 82 (02) : 387 - 415
  • [48] Emojis and stock returns
    Reschke, Felix
    Strych, Jan-Oliver
    REVIEW OF BEHAVIORAL FINANCE, 2024, 16 (02) : 223 - 233
  • [49] Biodiversity and stock returns
    Ma, Feng
    Wu, Hanlin
    Zeng, Qing
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2024, 95
  • [50] Nonstationarity of Stock Returns
    Wu, Kekun
    DIFFERENCE EQUATIONS, DISCRETE DYNAMICAL SYSTEMS AND APPLICATIONS, 2015, 150 : 153 - 165