Biomass waste can be characterized to identify its use in bio-energy production. This study aimed to characterize Mbwazirume peel (MP) and Nakyinyika peel (NP) biomass using various analyses such as proximate and ultimate, TGA, FT-IR, AAS, and SEM-EDS. This was in order to assess their suitability for bio-energy application in Uganda. Results indicate that MP biomass shows higher VM 69.988%, FC 13.582%, ash content 5.825%, and HHV 18.28 MJ-kg(-1), and shows lower moisture content 10.605%, nitrogen (N) 5.78%, oxygen (O) 46.74% and sulfur 0.30%. The decomposition of hemicellulose mainly takes place at 100-250 degrees C, cellulose at 300-500 degrees C, and lignin at 500 degrees C and above. The spectrometer results exhibit various functional groups which are related to C=C, OH, C=O, and C-O-C. The heavy metals (HMs) results for both samples indicate that Cu, Cd and Pb were low, and Zn was high. These toxics may not affect the environment due to their low amount of eco-toxicity and bioavailability. The SEM images show the presence of starch granules and irregular particles with heterogeneous morphology. This might justify the occurrence of high cellulose content due to additional restrictions on molecular motion. During the EDS analysis, the elements found in both ash residues were ordered as follows: O > K > C > Cl > Mg > P for MP, and K > Cl > Mg > P > Al for NP. All these properties proved that MP biomass is more suitable as a potential application for bio-energy.