On the existence and uniqueness of limit cycles in Lienard differential equations allowing discontinuities

被引:52
|
作者
Llibre, Jaume [1 ]
Ponce, Enrique [2 ]
Torres, Francisco [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] ETS Ingenieros, Camino Descubrimientos, Seville 41092, Spain
关键词
D O I
10.1088/0951-7715/21/9/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the non-existence and the uniqueness of limit cycles for the Lienard differential equation of the form x '' - f (x) x ' + g(x) = 0 where the functions f and g satisfy xf (x) > 0 and xg(x) > 0 for x not equal 0 but can be discontinuous at x = 0. In particular, our results allow us to prove the non-existence of limit cycles under suitable assumptions, and also prove the existence and uniqueness of a limit cycle in a class of discontinuous Lienard systems which are relevant in engineering applications.
引用
收藏
页码:2121 / 2142
页数:22
相关论文
共 50 条
  • [41] UNIQUENESS OF LIMIT-CYCLES IN A LIENARD-TYPE SYSTEM
    HUANG, XC
    SUN, PT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (02) : 348 - 359
  • [42] A note on ''uniqueness of limit cycles in a Lienard-type system''
    Kooij, RE
    Jianhua, SH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) : 260 - 276
  • [43] ON THE EXISTENCE AND UNIQUENESS OF A LIMIT CYCLE FOR A LIENARD SYSTEM WITH A DISCONTINUITY LINE
    Jiang, Fangfang
    Shi, Junping
    Wang, Qing-guo
    Sun, Jitao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) : 2509 - 2526
  • [44] Uniqueness of limit cycles for polynomial first-order differential equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) : 168 - 189
  • [45] LIMIT-CYCLES OF LIENARD EQUATIONS WITH NONLINEAR DAMPING
    URBINA, AM
    DELABARRA, GL
    DELABARRA, ML
    CANAS, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (02): : 251 - 256
  • [46] Note on limit cycles for m-piecewise discontinuous polynomial Lienard differential equations
    Dong, Guangfeng
    Liu, Changjian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):
  • [47] ON THE BOUNDEDNESS OF SOLUTIONS,EXISTENCE AND UNIQUENESS OF LIMIT CYCLES FOR A CLASS OF CUBIC DIFFERENTIAL SYSTEM
    WANG Chengwen Shandong Institute of Mining and Technology
    SystemsScienceandMathematicalSciences, 1993, (03) : 217 - 226
  • [48] 2 THEOREMS ON EXISTENCE OF LIMIT-CYCLES OF THE LIENARD EQUATION
    CHEN, XD
    HUANG, QC
    KEXUE TONGBAO, 1982, 27 (03): : 344 - 345
  • [49] More limit cycles than expected in Lienard equations
    Dumortier, Freddy
    Panazzolo, Daniel
    Roussarie, Robert
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1895 - 1904
  • [50] On the existence and uniqueness of limit cycles for hybrid oscillators
    Hebai Chen
    Dongmei Xiao
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2049 - 2071