On the abc conjecture for a derived logarithmic fuction of the Euler function

被引:6
|
作者
Yamashita, Michinori [1 ]
Miyata, Daisuke [2 ]
机构
[1] Rissho Univ, Fac Geoenvironm Sci, Saitama 3600194, Japan
[2] Chiba Univ Commerce, Fac Commerce & Econ, Chiba 2720827, Japan
关键词
D O I
10.1109/CCATS.2015.13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
At first we review the properties of the derive logarithmic function L, and we state the abc conjecture for L of Euler function phi. Thus we proved the abc conjecture for L holds for some cases.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 50 条
  • [21] A CONJECTURE CONCERNING EULER NUMBERS
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (06): : 538 - &
  • [22] THE EULER EQUATION AND ONSAGER CONJECTURE
    Boling Guo
    Guangwu Wang
    Annals of Applied Mathematics, 2017, 33 (04) : 331 - 339
  • [23] Vojta's conjecture on rational surfaces and the abc conjecture
    Yasufuku, Yu
    FORUM MATHEMATICUM, 2018, 30 (03) : 631 - 649
  • [24] A more general ABC conjecture
    Vojta, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (21) : 1103 - 1116
  • [25] Shimura curves and the abc conjecture
    Pasten, Hector
    JOURNAL OF NUMBER THEORY, 2024, 254 : 214 - 335
  • [26] Experiments on the abc-conjecture
    Baker, A
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2004, 65 (3-4): : 253 - 260
  • [27] A lower bound in the abc conjecture
    van Frankenhuysen, M
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 91 - 95
  • [28] The abc–conjecture for Algebraic Numbers
    Jerzy Browkin
    Acta Mathematica Sinica, 2006, 22 : 211 - 222
  • [29] On a height related to the abc conjecture
    Dubickas, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (06): : 853 - 857
  • [30] The logarithmic Sarnak conjecture for ergodic weights
    Frantzikinakis, Nikos
    Host, Bernard
    ANNALS OF MATHEMATICS, 2018, 187 (03) : 869 - 931