Parallel parameter optimization algorithm in dynamic general equilibrium models

被引:1
|
作者
Gruzdev, Arseniy P. [1 ]
Melnikov, Nikolai B. [1 ,2 ]
Dalton, Michael G. [3 ]
Weitzel, Matthias [4 ]
O'Neill, Brian C. [5 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
[2] RAS, Cent Econ & Math Inst, Moscow, Russia
[3] NOAA, Seattle, WA USA
[4] European Commiss, Joint Res Ctr, Seville, Spain
[5] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 32期
基金
美国国家科学基金会;
关键词
Computational general equilibrium model; Economic growth; Iterative methods; Parallel computing; Energy economics; Climate impacts;
D O I
10.1016/j.ifacol.2018.11.482
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a parallel parameter optimization algorithm for reproducing future projections of certain model outputs in dynamic general equilibrium models. The optimization problem is reduced to a nonlinear system of equations. The Jacobian matrix for a Newton type solver in the problem is generated in parallel. The parameter optimization algorithm is implemented for parallel systems with distributed memory by using MPI. To achieve better performance of the parallel algorithm we use the parallel Fair-Taylor algorithm for computing an equilibrium path. Calculation of prices, input-output ratios and international trade for different time steps is carried out in parallel at each iteration of the method. The solution method is implemented for parallel systems with shared memory by using OpenMP. The effectiveness of the hybrid MPI+OpenMP parallel code for parameter optimization is demonstrated in the example of a global multi-sector energy economics model with scenarios that are used for studying climate change impacts on land use. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 567
页数:6
相关论文
共 50 条
  • [31] Using dynamic general equilibrium models for policy analysis.
    Piggott, J
    JOURNAL OF ECONOMIC LITERATURE, 2003, 41 (04) : 1278 - 1280
  • [32] Research on parallel distributed clustering algorithm applied to cutting parameter optimization
    Xudong Wei
    Qingzhen Sun
    Xianli Liu
    Caixu Yue
    Steven Y. Liang
    Lihui Wang
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 7895 - 7904
  • [33] Asynchronous Parallel Surrogate Optimization Algorithm for Quantitative Strategy Parameter Tuning
    Yongze Sun
    Shouyan Du
    Zhonghua Lu
    Journal of Signal Processing Systems, 2021, 93 : 309 - 321
  • [34] Evaluation of a New Parallel Numerical Parameter Optimization Algorithm for a Dynamical System
    Duran, Ahmet
    Tuncel, Mehmet
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [35] Research on parallel distributed clustering algorithm applied to cutting parameter optimization
    Wei, Xudong
    Sun, Qingzhen
    Liu, Xianli
    Yue, Caixu
    Liang, Steven Y.
    Wang, Lihui
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (11-12): : 7895 - 7904
  • [36] Asynchronous Parallel Surrogate Optimization Algorithm for Quantitative Strategy Parameter Tuning
    Sun, Yongze
    Du, Shouyan
    Lu, Zhonghua
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2021, 93 (2-3): : 309 - 321
  • [37] Parallel Dynamic Multi-Objective Optimization Evolutionary Algorithm
    Grid, Maroua
    Belaiche, Leila
    Kahloul, Laid
    Benharzallah, Saber
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 164 - 169
  • [38] An integration based optimization approach for parameter estimation in dynamic models
    Yuceer, M
    Atasoy, I
    Berber, R
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 631 - 636
  • [39] Robustness metrics for dynamic optimization models under parameter uncertainty
    Samsatli, NJ
    Papageorgiou, LG
    Shah, N
    AICHE JOURNAL, 1998, 44 (09) : 1993 - 2006
  • [40] Robustness metrics for dynamic optimization models under parameter uncertainty
    Centre for Process Systems Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BY, United Kingdom
    AIChE J., 9 (1993-2006):