Robot Learning of Everyday Object Manipulations via Human Demonstration

被引:18
|
作者
Dang, Hao [1 ]
Allen, Peter K. [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
关键词
D O I
10.1109/IROS.2010.5651244
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We deal with the problem of teaching a robot to manipulate everyday objects through human demonstration. We first design a task descriptor which encapsulates important elements of a task. The design originates from observations that manipulations involved in many everyday object tasks can be considered as a series of sequential rotations and translations, which we call manipulation primitives. We then propose a method that enables a robot to decompose a demonstrated task into sequential manipulation primitives and construct a task descriptor. We also show how to transfer a task descriptor learned from one object to similar objects. In the end, we argue that this framework is highly generic. Particularly, it can be used to construct a robot task database that serves as a manipulation knowledge base for a robot to succeed in manipulating everyday objects.
引用
收藏
页码:1284 / 1289
页数:6
相关论文
共 50 条
  • [31] An Incremental Approach to Learning Generalizable Robot Tasks from Human Demonstration
    Ghalamzan E, Amir M.
    Paxton, Chris
    Hager, Gregory D.
    Bascetta, Luca
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5616 - 5621
  • [32] Learning robot behaviour and skills based on human demonstration and advice:: The machine learning paradigm
    Dillmann, R
    Rogalla, O
    Ehrenmann, M
    Zöllner, R
    Bordegoni, M
    ROBOTICS RESEARCH, 2000, : 229 - 238
  • [33] Reinforcement Learning with Decoupled State Representation for Robot Manipulations
    Dong, Kun
    Zeng, Yu
    Wang, Kun
    Luo, Yongle
    Wang, Yuxin
    Cheng, Erkang
    Sun, Zhiyong
    Zhang, Qiang
    Song, Bo
    NEURAL PROCESSING LETTERS, 2024, 56 (05)
  • [34] Development of a Mimic Robot-Learning From Demonstration Incorporating Object Detection and Multiaction Recognition
    Hwang, Pin-Jui
    Hsu, Chen-Chien
    Wang, Wei-Yen
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2020, 9 (03) : 79 - 86
  • [35] Perception for Everyday Human Robot Interaction
    Worch, Jan-Hendrik
    Balint-Benczedi, Ferenc
    Beetz, Michael
    KUNSTLICHE INTELLIGENZ, 2016, 30 (01): : 21 - 27
  • [36] From Human to Robot Everyday Activity
    Mason, Celeste
    Gadzicki, Konrad
    Meier, Moritz
    Ahrens, Florian
    Kluss, Thorsten
    Maldonado, Jaime
    Putze, Felix
    Fehr, Thorsten
    Zetzsche, Christoph
    Herrmann, Manfred
    Schill, Kerstin
    Schultz, Tanja
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8997 - 9004
  • [37] An Object-Centric Paradigm for Robot Programming by Demonstration
    Huang, Di-Wei
    Katz, Garrett E.
    Langsfeld, Joshua D.
    Oh, Hyuk
    Gentili, Rodolphe J.
    Reggia, James A.
    FOUNDATIONS OF AUGMENTED COGNITION, AC 2015, 2015, 9183 : 745 - 756
  • [38] GenH2R: Learning Generalizable Human-to-Robot Handover via Scalable Simulation, Demonstration, and Imitation
    Wang, Zifan
    Chen, Junyu
    Chen, Ziqing
    Xie, Pengwei
    Chen, Rui
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 16362 - 16372
  • [39] Accelerated Robot Learning via Human Brain Signals
    Akinola, Iretiayo
    Wang, Zizhao
    Shi, Junyao
    He, Xiaomin
    Lapborisuth, Pawan
    Xu, Jingxi
    Watkins-Valls, David
    Sajda, Paul
    Allen, Peter
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 3799 - 3805
  • [40] A survey of robot learning from demonstration
    Argall, Brenna D.
    Chernova, Sonia
    Veloso, Manuela
    Browning, Brett
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) : 469 - 483