Best proximity points in non-Archimedean fuzzy metric spaces with application to domain of words

被引:2
|
作者
Ali, Basit [1 ]
Ali, Muzammil [1 ]
Hussain, Azhar [2 ]
George, Reny [3 ]
Nazir, Talat [4 ]
机构
[1] Univ Management & Technol, Sch Sci, Dept Math, C-2, Lahore 54770, Pakistan
[2] Univ Chakwal, Dept Math, Chakwal 48800, Pakistan
[3] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities AlKharj, Dept Math, Al Kharj 11942, Saudi Arabia
[4] Univ South Africa, Dept Math Sci, ZA-0003 Florida, South Africa
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
best proximity point; quasi; -contraction; fuzzy contractive mapping; CONTRACTIVE MAPPINGS; FIXED-POINTS; THEOREMS; EXISTENCE;
D O I
10.3934/math.2022909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and uniqueness of the best proximity points of nonself-mappings in the context of non-Archimedean fuzzy metric spaces. The existence of different proximal quasi-contractive mappings allowed us to generalize some results concerning the existence and uniqueness of the best proximity points in the existing literature. Moreover, an application in computer science, particularly in the domain of words has been provided.
引用
收藏
页码:16590 / 16611
页数:22
相关论文
共 50 条
  • [31] COINCIDENCE THEOREMS VIA CONTRACTIVE MAPPINGS IN ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES
    Prasad, Gopi
    Tomar, Anita
    Dimri, Ramesh Chandra
    Bartwal, Ayush
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2020, 27 (04): : 187 - 205
  • [32] On the Best Approximation in Non-Archimedean Normed Linear Spaces
    邱维敦
    东北数学, 1995, (04) : 437 - 441
  • [33] BEST APPROXIMATION PROPERTY IN NON-ARCHIMEDEAN NORMED SPACES
    IKEDA, M
    HAIFAWI, M
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1971, 74 (01): : 49 - &
  • [34] Coupled best proximity points in ordered metric spaces
    P Kumam
    V Pragadeeswarar
    M Marudai
    K Sitthithakerngkiet
    Fixed Point Theory and Applications, 2014
  • [35] Coupled best proximity points in ordered metric spaces
    Kumam, P.
    Pragadeeswarar, V.
    Marudai, M.
    Sitthithakerngkiet, K.
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [36] FIXED AND BEST PROXIMITY POINTS IN PARTIAL METRIC SPACES
    Asem, Victory
    Singh, Y. Mahendra
    JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 13 (06): : 1 - 15
  • [37] Coincidence Best Proximity Points in Convex Metric Spaces
    Gabeleh, Moosa
    Otafudu, Olivier Olela
    Shahzad, Naseer
    FILOMAT, 2018, 32 (07) : 2451 - 2463
  • [38] DISCUSSION ON THE EXISTENCE OF BEST PROXIMITY POINTS IN METRIC SPACES
    Hong, Shihuang
    Zhou, Jie
    Chen, Ji
    Hou, Haiyang
    Wang, Li
    FIXED POINT THEORY, 2020, 21 (01): : 191 - 210
  • [39] Proinov-Type Fixed-Point Results in Non-Archimedean Fuzzy Metric Spaces
    Roldan Lopez de Hierro, Antonio Francisco
    Fulga, Andreea
    Karapinar, Erdal
    Shahzad, Naseer
    MATHEMATICS, 2021, 9 (14)
  • [40] Common best proximity points theorems in metric spaces
    Amini-Harandi, A.
    OPTIMIZATION LETTERS, 2014, 8 (02) : 581 - 589