On stability of hyperbolic thermoelastic Reissner-Mindlin-Timoshenko plates

被引:13
|
作者
Pokojovy, Michael [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, D-78467 Constance, Germany
关键词
Reissner-Mindlin-Timoshenko plate; hyperbolic thermoelasticity; second sound; exponential stability; rotational symmetry; VON KARMAN SYSTEM; DECAY-RATES; 2ND SOUND; DYNAMIC THERMOELASTICITY; EXPONENTIAL STABILITY; GLOBAL EXISTENCE; STABILIZATION; EQUATIONS;
D O I
10.1002/mma.3140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovski operator for irrotational vector fields, which we discuss in the appendix. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1225 / 1246
页数:22
相关论文
共 50 条
  • [21] Wedge and crack solutions for Mindlin–Reissner plates
    J. A. Teixeira de Freitas
    C. Tiago
    International Journal of Fracture, 2020, 221 : 1 - 23
  • [22] NUMERICAL APPROXIMATION OF MINDLIN-REISSNER PLATES
    BREZZI, F
    FORTIN, M
    MATHEMATICS OF COMPUTATION, 1986, 47 (175) : 151 - 158
  • [23] The TDNNS method for Reissner-Mindlin plates
    Pechstein, Astrid S.
    Schoeberl, Joachim
    NUMERISCHE MATHEMATIK, 2017, 137 (03) : 713 - 740
  • [24] Polygonal topology optimization for Reissner–Mindlin plates
    Quoc-Hoa Pham
    Duc-Huynh Phan
    Engineering with Computers, 2022, 38 : 141 - 154
  • [25] A MULTIGRID METHOD FOR REISSNER-MINDLIN PLATES
    PEISKER, P
    NUMERISCHE MATHEMATIK, 1991, 59 (05) : 511 - 528
  • [26] OVER THE FRACTURE OF MINDLIN-REISSNER PLATES
    Raducanu, Razvan
    APLIMAT 2005 - 4TH INTERNATIONAL CONFERENCE, PT II, 2005, : 117 - 122
  • [27] An improved theory of laminated Reissner-Mindlin plates
    Formica, Giovanni
    Lembo, Marzio
    Podio-Guidugli, Paolo
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (7-8) : 1562 - 1575
  • [28] First-order VEM for Reissner–Mindlin plates
    A. M. D’Altri
    L. Patruno
    S. de Miranda
    E. Sacco
    Computational Mechanics, 2022, 69 : 315 - 333
  • [29] Stabilization of a thermoelastic Mindlin-Timoshenko plate model revisited
    Grobbelaar-Van Dalsen, Marie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1305 - 1325
  • [30] APPROXIMATION OF THE BUCKLING PROBLEM FOR REISSNER-MINDLIN PLATES
    Lovadina, Carlo
    Mora, David
    Rodriguez, Rodolfo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 603 - 632