On stability of hyperbolic thermoelastic Reissner-Mindlin-Timoshenko plates

被引:13
|
作者
Pokojovy, Michael [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, D-78467 Constance, Germany
关键词
Reissner-Mindlin-Timoshenko plate; hyperbolic thermoelasticity; second sound; exponential stability; rotational symmetry; VON KARMAN SYSTEM; DECAY-RATES; 2ND SOUND; DYNAMIC THERMOELASTICITY; EXPONENTIAL STABILITY; GLOBAL EXISTENCE; STABILIZATION; EQUATIONS;
D O I
10.1002/mma.3140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovski operator for irrotational vector fields, which we discuss in the appendix. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1225 / 1246
页数:22
相关论文
共 50 条
  • [1] Polynomial stabilization for thermoelastic Reissner-Mindlin-Timoshenko plates with structural damping
    Ramos, A. J. A.
    Araujo, A. L. A.
    Campelo, A. D. S.
    Freitas, M. M.
    Veras, L. S.
    ASYMPTOTIC ANALYSIS, 2023, 134 (1-2) : 63 - 84
  • [2] STABILITY ANALYSIS OF PARTIALLY VISCOELASTIC REISSNER-MINDLIN-TIMOSHENKO PLATES
    Frota, CiCERO L.
    Silva, Marcio a. jorge
    Pinheiro, Sandro b.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025,
  • [3] Stability of weakly dissipative Reissner-Mindlin-Timoshenko plates: A sharp result
    Campelo, A. D. S.
    Almeida Junior, D. S.
    Santos, M. L.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2018, 29 (02) : 226 - 252
  • [4] On Stability and Trace Regularity of Solutions to Reissner-Mindlin-Timoshenko Equations
    Avalos, George
    Toundykov, Daniel
    MODERN ASPECTS OF THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS, 2011, 216 : 79 - 91
  • [5] Stability to the dissipative Reissner-Mindlin-Timoshenko acting on displacement equation
    Campelo, A. D. S.
    Almeida Junior, D. S.
    Santos, M. L.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (02) : 157 - 193
  • [6] Dynamics of nonlinear Reissner-Mindlin-Timoshenko plate systems
    Feng, B.
    Freitas, M. M.
    Costa, A. L. C.
    Santos, M. L.
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (01) : 284 - 301
  • [7] Vibration of a Reissner-Mindlin-Timoshenko plate-beam system
    Labuschagne, A.
    van Rensburg, N. F. J.
    van der Merwe, A. J.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (7-8) : 1033 - 1044
  • [8] Solvability of a Reissner-Mindlin-Timoshenko plate-beam vibration model
    van Rensburg, N. F. J.
    Zietsman, L.
    van der Merwe, A. J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (01) : 149 - 162
  • [9] Local and global well-posedness of semilinear Reissner-Mindlin-Timoshenko plate equations
    Pei, Pei
    Rammaha, Mohammad A.
    Toundykov, Daniel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 105 : 62 - 85
  • [10] ON THE STABILITY OF MINDLIN-TIMOSHENKO PLATES
    Sare, Hugo D. Fernandez
    QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (02) : 249 - 263