Testing the Landau gauge operator product expansion on the lattice with a ⟨A2⟩ condensate -: art. no. 114003

被引:0
|
作者
Boucaud, P
Le Yaouanc, A
Leroy, JP
Micheli, J
Pène, O
Rodríguez-Quintero, J
机构
[1] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
[2] Univ Huelva, EPS La Rabida, Dept Fis Aplicada & Ingn Elect, Palos De La Fra 21819, Spain
来源
PHYSICAL REVIEW D | 2001年 / 63卷 / 11期
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the operator product expansion we show that the O(1/p(2)) correction to the perturbative expressions for the gluon propagator and the strong coupling constant resulting from lattice simulations in the Landau gauge are due to a nonvanishing vacuum expectation value of the operator A(mu)A(mu). This is done using the recently published Wilson coefficients of the identity operator computed to third order, and the subdominant Wilson coefficient computed in this paper to the leading logarithm. As a test of the applicability of OPE we compare the [A(mu)A(mu)] estimated from the gluon propagator and the one from the coupling constant in the flavorless case. Both agree within the statistical uncertainty root [A(mu)A(mu)] similar or equal to 1.64(15) GeV. Simultaneously we fit Lambda(MS) over bar = 233(28) MeV, in perfect agreement with previous lattice estimates. When the leading coefficients are only expanded to two loops, the two estimates of the condensate differ drastically. As a consequence we insist that the OPE can be applied in predicting physical quantities only if the Wilson coefficients are computed to a high enough perturbative order.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Ergodic properties of classical SU(2) lattice gauge theory -: art. no. 054506
    Bolte, J
    Müller, B
    Schäfer, A
    PHYSICAL REVIEW D, 2000, 61 (05):
  • [22] Calorons in SU(3) lattice gauge theory -: art. no. 116003
    Ilgenfritz, EM
    Müller-Preussker, M
    Peschka, D
    PHYSICAL REVIEW D, 2005, 71 (11):
  • [23] Improved lattice gauge field Hamiltonian -: art. no. 034503.
    Luo, XQ
    Guo, SH
    Kröger, H
    Schütte, D
    PHYSICAL REVIEW D, 1999, 59 (03)
  • [24] Measure of the path integral in lattice gauge theory -: art. no. 077502
    Paradis, F
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICAL REVIEW D, 2005, 71 (07): : 1 - 4
  • [25] SU(N) chiral gauge theories on the lattice -: art. no. 094506
    Golterman, M
    Shamir, Y
    PHYSICAL REVIEW D, 2004, 70 (09): : 094506 - 1
  • [26] Quantum geometries of A2 -: art. no. 017
    Hailu, G
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (02):
  • [27] Towards the equation of state of a classical SU(2) lattice gauge theory -: art. no. 064902
    Fülöp, A
    Biró, TS
    PHYSICAL REVIEW C, 2001, 64 (06): : 649021 - 649025
  • [28] Landau expansion for the Kugel-Khomskii t2g Hamiltonian -: art. no. 094409
    Harris, AB
    Aharony, A
    Entin-Wohlman, O
    Korenblit, IY
    Yildirim, T
    PHYSICAL REVIEW B, 2004, 69 (09)
  • [29] Noncompact gauge fields on a lattice:: SU(n) theories -: art. no. 074509
    Palumbo, F
    Scimia, R
    PHYSICAL REVIEW D, 2002, 65 (07)
  • [30] Propagation of sound in a Bose-Einstein condensate in an optical lattice -: art. no. 023609
    Menotti, C
    Krämer, M
    Smerzi, A
    Pitaevskii, L
    Stringari, S
    PHYSICAL REVIEW A, 2004, 70 (02): : 023609 - 1