Groups, Jacobi functions, and rigged Hilbert spaces

被引:3
|
作者
Celeghini, E. [1 ,2 ,3 ]
Gadella, M. [3 ]
del Olmo, M. A. [3 ]
机构
[1] Univ Firenze, Dipartimento Fis, I-50019 Florence, Italy
[2] INFN Sez Firenze, I-50019 Florence, Italy
[3] Univ Valladolid, IMUVA Math Res Inst, Dept Fis Teor Atom & Opt, E-47005 Valladolid, Spain
关键词
CONFORMAL-GROUP SU(2,2); BANACH GELFAND TRIPLES; MATHEMATICAL FORMALISM; DIRAC FORMULATION; SYSTEMS; REPRESENTATIONS; POLYNOMIALS; OPERATORS;
D O I
10.1063/1.5138238
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is a contribution to the study of the relations between special functions, Lie algebras, and rigged Hilbert spaces. The discrete indices and continuous variables of special functions are in correspondence with the representations of their algebra of symmetry, which induce discrete and continuous bases coexisting on a rigged Hilbert space supporting the representation. Meaningful operators are shown to be continuous on the spaces of test vectors and the dual. Here, the chosen special functions, called "algebraic Jacobi functions," are related to the Jacobi polynomials, and the Lie algebra is su(2, 2). These functions with m and q fixed also exhibit a su(1, 1)-symmetry. Different discrete and continuous bases are introduced. An extension in the spirit of the associated Legendre polynomials and the spherical harmonics is presented introducing the "Jacobi harmonics" that are a generalization of the spherical harmonics to the three-dimensional hypersphere S-3. Published under license by AIP Publishing.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Parametrization of supersingular perturbations in the method of rigged Hilbert spaces
    R. V. Bozhok
    V. D. Koshmanenko
    Russian Journal of Mathematical Physics, 2007, 14 : 409 - 416
  • [22] DYNAMICAL RESONANCES AND LIFETIMES IN RIGGED HILBERT-SPACES
    ZHAO, MS
    PHYSICS LETTERS A, 1995, 204 (5-6) : 319 - 322
  • [23] Operators in rigged Hilbert spaces: Some spectral properties
    Bellomonte, Giorgia
    Di Bella, Salvatore
    Trapani, Camillo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 931 - 946
  • [24] Riesz-Like Bases in Rigged Hilbert Spaces
    Bellomonte, Giorgia
    Trapani, Camillo
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (03): : 243 - 265
  • [25] Eigenfunction expansions and scattering theory in rigged Hilbert spaces
    Gomez-Cubillo, F.
    5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [26] DIRICHLET FORMS AND DIFFUSION PROCESSES ON RIGGED HILBERT SPACES
    ALBEVERIO, S
    HOEGHKROHN, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (01): : 1 - 57
  • [27] Resonances and time reversal operator in rigged Hilbert spaces
    Gadella, M
    de la Madrid, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (01) : 93 - 113
  • [28] Hilbert spaces of holomorphic functions on complex Lie groups
    Driver, BK
    Gross, L
    NEW TRENDS IN STOCHASTIC ANALYSIS, 1997, : 76 - 106
  • [29] Application of the Rigged Hilbert Spaces into the Generalized Signals & Systems Theory
    Heredia-Juesas, J.
    Gago-Ribas, E.
    Vidal-Garcia, P.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 1365 - 1368
  • [30] Applications of rigged Hilbert spaces in quantum mechanics and signal processing
    Celeghini, E.
    Gadella, M.
    del Olmo, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (07)