Groups, Jacobi functions, and rigged Hilbert spaces

被引:3
|
作者
Celeghini, E. [1 ,2 ,3 ]
Gadella, M. [3 ]
del Olmo, M. A. [3 ]
机构
[1] Univ Firenze, Dipartimento Fis, I-50019 Florence, Italy
[2] INFN Sez Firenze, I-50019 Florence, Italy
[3] Univ Valladolid, IMUVA Math Res Inst, Dept Fis Teor Atom & Opt, E-47005 Valladolid, Spain
关键词
CONFORMAL-GROUP SU(2,2); BANACH GELFAND TRIPLES; MATHEMATICAL FORMALISM; DIRAC FORMULATION; SYSTEMS; REPRESENTATIONS; POLYNOMIALS; OPERATORS;
D O I
10.1063/1.5138238
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is a contribution to the study of the relations between special functions, Lie algebras, and rigged Hilbert spaces. The discrete indices and continuous variables of special functions are in correspondence with the representations of their algebra of symmetry, which induce discrete and continuous bases coexisting on a rigged Hilbert space supporting the representation. Meaningful operators are shown to be continuous on the spaces of test vectors and the dual. Here, the chosen special functions, called "algebraic Jacobi functions," are related to the Jacobi polynomials, and the Lie algebra is su(2, 2). These functions with m and q fixed also exhibit a su(1, 1)-symmetry. Different discrete and continuous bases are introduced. An extension in the spirit of the associated Legendre polynomials and the spherical harmonics is presented introducing the "Jacobi harmonics" that are a generalization of the spherical harmonics to the three-dimensional hypersphere S-3. Published under license by AIP Publishing.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Groups, Special Functions and Rigged Hilbert Spaces
    Celeghini, Enrico
    Gadella, Manuel
    del Olmo, Mariano A.
    AXIOMS, 2019, 8 (03)
  • [2] Zernike functions, rigged Hilbert spaces, and potential applications
    Celeghini, E.
    Gadella, M.
    del Olmo, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [3] Rigged Hilbert spaces and contractive families of Hilbert spaces
    Bellomonte, Giorgia
    Trapani, Camillo
    MONATSHEFTE FUR MATHEMATIK, 2011, 164 (03): : 271 - 285
  • [4] Rigged Hilbert spaces and contractive families of Hilbert spaces
    Giorgia Bellomonte
    Camillo Trapani
    Monatshefte für Mathematik, 2011, 164 : 271 - 285
  • [5] Irreversibility, resonances and rigged Hilbert spaces
    Antoniou, IE
    Gadella, M
    IRREVERSIBLE QUANTUM DYNAMICS, 2003, 622 : 245 - 302
  • [6] Spherical harmonics and rigged Hilbert spaces
    Celeghini, E.
    Gadella, M.
    del Olmo, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
  • [7] A constructive presentation of rigged Hilbert spaces
    Celeghini, Enrico
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [8] Generating functions of the Jacobi polynomials and related Hilbert spaces of analytic functions
    Watanabe, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1998, 74 (03) : 46 - 48
  • [9] Rigged Hilbert spaces for chaotic dynamical systems
    Suchanecki, Z
    Antoniou, I
    Tasaki, S
    Bandtlow, OF
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (11) : 5837 - 5847
  • [10] Singular Perturbations and Operators in Rigged Hilbert Spaces
    Salvatore di Bella
    Camillo Trapani
    Mediterranean Journal of Mathematics, 2016, 13 : 2011 - 2024