Weak Solutions for a Sixth-Order Phase-Field Equation with Degenerate Mobility

被引:3
|
作者
Duan, Ning [1 ,2 ]
Li, Zhenbang [3 ]
Liu, Fengnan [4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
[3] Xian Univ Technol, Sch Sci, Xian 710048, Peoples R China
[4] Dalian Univ Technol, Sch Math & Phys Sci, Panjin 124221, Peoples R China
基金
中国博士后科学基金;
关键词
Sixth-order phase-field equation; Degenerate mobility; Weak solution; Existence; Galerkin approximation; CAHN-HILLIARD EQUATION; EXISTENCE; MODEL;
D O I
10.1007/s40840-019-00777-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the well posedness of a sixth-order phase-field equation with degenerate phase-dependent diffusion mobility in three-dimensional space is studied. We first define a notion of weak solutions and establish a regularized problem. Then, by considering the limits of the regularized problem, we obtain the existence of such solutions.
引用
收藏
页码:1857 / 1883
页数:27
相关论文
共 50 条
  • [31] Some Properties of Solutions for the Sixth-Order Cahn-Hilliard-Type Equation
    Wang, Zhao
    Liu, Changchun
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [32] ON THE SOLVABLE OF NONLINEAR DIFFERENCE EQUATION OF SIXTH-ORDER
    Yazlik, Yasin
    Gungor, Mumet
    JOURNAL OF SCIENCE AND ARTS, 2019, (02): : 399 - 414
  • [33] Global existence and blowup of solutions for the multidimensional sixth-order “good” Boussinesq equation
    Xu Runzhang
    Yang Yanbing
    Liu Bowei
    Shen Jihong
    Huang Shaobin
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 955 - 976
  • [34] Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility
    Dai, Shibin
    Du, Qiang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (03) : 1161 - 1184
  • [35] EXISTENCE AND BLOW-UP OF SOLUTIONS FOR THE SIXTH-ORDER DAMPED BOUSSINESQ EQUATION
    Wang, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (05): : 1057 - 1071
  • [36] A sixth-order compact finite difference scheme to the numerical solutions of Burgers' equation
    Sari, Murat
    Gurarslan, Gurhan
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) : 475 - 483
  • [37] GLOBAL EXISTENCE AND POINTWISE ESTIMATES OF SOLUTIONS FOR THE GENERALIZED SIXTH-ORDER BOUSSINESQ EQUATION
    Guo, Changhong
    Fang, Shaomei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (05) : 1457 - 1487
  • [38] EXACT SOLUTIONS OF THE GENERALIZED POCHHAMMER-CHREE EQUATION WITH SIXTH-ORDER DISPERSION
    Triki, Houria
    Benlalli, Abdelkrim
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (7-8): : 935 - 951
  • [39] Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation
    Xu Runzhang
    Yang Yanbing
    Liu Bowei
    Shen Jihong
    Huang Shaobin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 955 - 976
  • [40] Sixth-Order Degenerate Band Edge in Coupled Microstrip Waveguides
    Yazdi, Farshad
    Oshmarin, Dmitry
    Mealy, Tarek
    Almutawa, Ahmad T.
    Nikzamir, Alireza
    Capolino, Filippo
    PHYSICAL REVIEW APPLIED, 2022, 17 (06)