Monolithic Passive-Active Integration of Epitaxially Grown Quantum Dot Lasers on Silicon

被引:7
|
作者
Zhang, Zeyu [1 ]
Shang, Chen [2 ]
Norman, Justin C. [3 ]
Koscica, Rosalyn [2 ]
Feng, Kaiyin [1 ]
Bowers, John E. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Elect & Comp Engn Dept, Santa Barbara, CA 93117 USA
[2] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93117 USA
[3] Quintessent Inc, Santa Barbara, CA 93117 USA
关键词
laser epitaxy; photonic integration; quantum dot lasers; PHOTONICS; TEMPERATURE; THRESHOLD; DIFFUSION; DESIGN;
D O I
10.1002/pssa.202100522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum dot (QD) lasers epitaxially grown on Si have already been demonstrated to show record low threshold, high temperature tolerance, and low feedback sensitivity. When grown on the silicon photonic chip and integrated with Si waveguides (WGs), QD lasers offer considerable economical and foundry-scalable solutions to on-chip light sources. Yet, a technology that enables both growth and integration of QD lasers on a silicon photonic chip has not been demonstrated. Herein, a novel device platform which enables integration of the QD active region with passive WG structures is designed. By doing so, complex and high-performance lasers such as distributed Bragg reflector lasers, mode-locked lasers, and sampled grating distributed Bragg reflector tunable lasers are demonstrated in this platform. The same laser epitaxial stack can be easily grown on the substrate of a silicon photonic chip to allow light coupling from QD laser cavities to the silicon WGs.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Monolithic Integration of III-V Quantum Dot Lasers on Silicon for Silicon Photonics
    Liu, Huiyun
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [12] Offset Quantum Dot Mode-Locked Laser Enabled by Passive-Active Integration
    Zhang, Zeyu
    Norman, Justin
    Liu, Songtao
    Malik, Aditya
    Bowers, John E.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [13] Integration of Passive Components with High Performance Quantum Dot Lasers on Silicon
    Lee, Chi-Sen
    Wang, Zihao
    Guo, Wei
    2013 IEEE OPTICAL INTERCONNECTS CONFERENCE, 2013, : 110 - 111
  • [14] Monolithic and hybrid integration of InAs/GaAs quantum dot microdisk lasers on silicon
    Kryzhanovskaya, N.
    Moiseev, E.
    Nadtochiy, A.
    Maximov, M.
    Dragunova, A.
    Fetisova, M.
    Kulagina, M.
    Guseva, Yu
    Mintairov, S.
    Kalyuzhnyy, N.
    Tang, M.
    Liao, M.
    Wu, J.
    Chen, S.
    Liu, H.
    Zhukov, A.
    INTEGRATED OPTICS: DESIGN, DEVICES, SYSTEMS AND APPLICATIONS VI, 2021, 11775
  • [15] Investigation into the InAs/GaAs quantum dot material epitaxially grown on silicon for O band lasers
    Tianyi Tang
    Tian Yu
    Guanqing Yang
    Jiaqian Sun
    Wenkang Zhan
    Bo Xu
    Chao Zhao
    Zhanguo Wang
    Journal of Semiconductors, 2022, 43 (01) : 41 - 47
  • [16] Investigation into the InAs/GaAs quantum dot material epitaxially grown on silicon for O band lasers
    Tang, Tianyi
    Yu, Tian
    Yang, Guanqing
    Sun, Jiaqian
    Zhan, Wenkang
    Xu, Bo
    Zhao, Chao
    Wang, Zhanguo
    JOURNAL OF SEMICONDUCTORS, 2022, 43 (01)
  • [17] Monolithic Integration of Quantum Cascade Lasers and Passive Components
    Montoya, Juan
    Wang, Christine
    Goyal, Anish
    Creedon, Kevin
    Connors, Michael
    Daulton, Jeffrey
    Donnelly, Joseph
    Missaggia, Leo
    Sanchez-Rubio, Antonio
    Herzog, William
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [18] III-V Quantum Dot Lasers Epitaxially Grown on Si
    Chen, Siming
    Tang, Mingchu
    Wu, Jiang
    Liao, Mengya
    Seeds, Alwyn
    Liu, Huiyun
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2017,
  • [19] Red-emitting InP quantum dot micro-disk lasers epitaxially grown on (001) silicon
    Luo, Wei
    Lin, Liying
    Huang, Jie
    Han, Yu
    Lau, Kei May
    OPTICS LETTERS, 2021, 46 (18) : 4514 - 4517
  • [20] Investigation of Current-Driven Degradation of 1.3 μm Quantum-Dot Lasers Epitaxially Grown on Silicon
    Buffolo, Matteo
    Samparisi, Fabio
    Rovere, Lorenzo
    De Santi, Carlo
    Jung, Daehwan
    Norman, Justin
    Bowers, John E.
    Herrick, Robert W.
    Meneghesso, Gaudenzio
    Zanoni, Enrico
    Meneghini, Matteo
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (02)